V. Nikolova, C. Y. Koo, S. A. Ibrahim, Z. Wangs, D. Spillmann et al., Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression, Carcinogenesis, vol.30, pp.397-407, 2009.

F. Zong, E. Fthenou, F. Mundt, T. Szatmári, I. Kovalszky et al., Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration, PLoS ONE, vol.6, 2011.

F. Corti, F. Finetti, M. Ziche, and M. Simons, The syndecan-4/protein kinase C? pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo, J. Biol. Chem, vol.288, pp.12712-12721, 2013.

R. L. Longley, A. Woods, A. Fleetwood, G. J. Cowling, J. T. Gallagher et al., Control of morphology, cytoskeleton and migration by syndecan-4, J. Cell Sci, vol.112, pp.3421-3431, 1999.

H. Hassan, B. Greve, M. S. Pavao, L. Kiesel, S. A. Ibrahim et al., Syndecan-1 modulates ?-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation, FEBS J, vol.280, pp.2216-2227, 2013.

B. Péterfia, T. Füle, K. Baghy, K. Szabadkai, A. Fullár et al., Syndecan-1 Enhances Proliferation, Migration and Metastasis of HT-1080 Cells in Cooperation with Syndecan-2, PLoS ONE, vol.7, 2012.

C. E. Luyt, A. Meddahi-pellé, B. Ho-tin-noe, S. Colliec-jouault, J. Guezennec et al., Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

A. C. Lake, R. Vassy, M. Di-benedetto, D. Lavigne, C. Le-visage et al., Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1, J. Biol. Chem, vol.281, pp.37844-37852, 2006.

G. Sarlon, F. Zemani, L. David, J. P. Duong-van-huyen, B. Dizier et al., Therapeutic effect of fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia, J. Thromb. Haemost, vol.10, pp.38-48, 2012.

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochem. Pharmacol, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

S. Soeda, T. Kozako, K. Iwata, and H. Shimeno, Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: Its possible mechanism of action, Biochim. Biophys. Acta, vol.1497, pp.127-134, 2000.

B. S. Kim, J. Y. Park, H. J. Kang, H. J. Kim, and J. Lee, Fucoidan/FGF-2 induces angiogenesis through JNK-and p38-mediated activation of AKT/MMP-2 signalling, Biochem. Biophys. Res. Commun, vol.450, pp.1333-1338, 2014.

I. Vlodavsky and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis, J. Clin. Investig, vol.108, pp.341-347, 2001.

, Mar. Drugs, vol.13, p.6607, 2015.

F. Levy-adam, G. Abboud-jarrous, M. Guerrini, D. Beccati, I. Vlodavsky et al., Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase, J. Biol. Chem, vol.280, pp.20457-20466, 2005.

F. Levy-adam, H. Q. Miao, R. L. Heinrikson, I. Vlodavsky, and N. Ilan, Heterodimer formation is essential for heparanase enzymatic activity, Biochem. Biophys. Res. Commun, vol.308, pp.885-891, 2003.

C. R. Parish, C. Freeman, and M. D. Hulett, Heparanase: A key enzyme involved in cell invasion, Biochim. Biophys. Acta, pp.99-108, 1471.

C. Crescimanno, D. Marzioni, F. J. Paradinas, B. Schrurs, J. Mühlhauser et al., Expression pattern alterations of syndecans and glypican-1 in normal and pathological trophoblast, J. Pathol, vol.189, pp.600-608, 1999.

N. Adhikari, M. Carlson, B. Lerman, and J. L. Hall, Changes in Expression of Proteoglycan Core Proteins and Heparan Sulfate Enzymes in the Developing and Adult Murine Aorta, J. Cardiovasc. Transl. Res, vol.4, pp.313-320, 2011.

V. Friand, O. Haddad, D. Papy-garcia, H. Hlawaty, R. Vassy et al., Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells, Glycobiology, vol.19, pp.1511-1524, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415323

F. Charni, V. Friand, O. Haddad, H. Hlawaty, L. Martin et al., Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells, Biochim. Biophys. Acta, vol.1790, pp.1314-1326, 2009.
URL : https://hal.archives-ouvertes.fr/cea-02529135

J. F. Deux, A. Meddahi-pelle, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

E. A. Sweeney, H. Lortat-jacob, G. V. Priestley, B. Nakamoto, and T. Papayannopoulou, Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: Involvement in mobilization of stem/progenitor cells, Blood, vol.99, pp.44-51, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01053365

O. Salvucci, L. Yao, S. Villalba, A. Sajewicz, S. Pittaluga et al., Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1, Blood, vol.99, pp.2703-2711, 2002.

C. Ferreras, G. Rushton, C. L. Cole, M. Babur, B. A. Telfer et al., Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor, J. Biol. Chem, vol.287, pp.36132-36146, 2012.

Y. Wang, X. Yang, S. Yamagata, T. Yamagata, and T. Sato, Involvement of Ext1 and heparanase in migration of mouse FBJ osteosarcoma cells, Mol. Cell. Biochem, vol.373, pp.63-72, 2013.

J. Huegel, M. Enomoto-iwamoto, F. Sgariglia, E. Koyama, and M. Pacifici, Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses, Am J Pathol, vol.185, pp.1676-1685, 2015.

M. Busse, A. Feta, J. Presto, M. Wilén, M. Gronning et al., Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation, J. Biol. Chem, vol.282, pp.32802-32810, 2007.

E. Tkachenko, J. M. Rhodes, M. Simons, and . Syndecans, New kids on the signaling block, Circ. Res, vol.96, pp.488-500, 2005.

A. Sutton, V. Friand, D. Papy-garcia, M. Dagouassat, L. Martin et al., Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells, Mol. Cancer Ther, vol.6, pp.2948-2958, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195453

A. Koo, C. F. Dewey, and G. Garcia-cardena, Hemodynamic Shear Stress Characteristic of Atherosclerosis-Resistant Regions Promotes Glycocalyx Formation in Cultured Endothelial Cells, AJP Cell Physiol, vol.304, pp.137-146, 2012.

D. Chappell, N. Dörfler, M. Jacob, M. Rehm, U. Welsch et al., Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion, Shock, vol.34, pp.133-139, 2010.

F. Peysselon and S. Ricard-blum, Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis, Matrix Biol, vol.35, pp.73-81, 2014.

F. Chevalier, D. Arnaud, E. Henault, O. Guillevic, F. Siñeriz et al., A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: Towards a matrix-based therapy?, Eur. Cells Mater, vol.30, pp.51-68, 2015.

C. Luyt, B. Ho-tin-noe, S. E. Colliec-jouault, M. Jacob, M. Osborne-pellegrin et al., Low-Molecular-Weight Fucoidan Promotes Therapeutic Revascularization in a Rat Model of Critical Hindlimb Ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

J. F. Deux, A. Meddahi-pellé, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

O. Berteau and B. Mulloy, Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, vol.13, pp.29-40, 2003.

S. Matou, D. Helley, D. Chabut, A. Bros, and A. Fischer, Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro, Thromb. Res, vol.106, pp.213-221, 2002.

C. Boisson-vidal, F. Zemani, G. Calliguiri, I. Galy-fauroux, S. Colliec-jouault et al., Neoangiogenesis induced by progenitor endothelial cells: Effect of fucoidan from marine algae, Cardiovasc. Hematol. Agents Med. Chem, vol.5, pp.67-77, 2007.

O. Haddad, E. Guyot, N. Marinval, F. Chevalier, L. Maillard et al., Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis, Mar. Drugs, vol.13, pp.6588-6608, 2015.

A. Purnama, R. Aid-launais, O. Haddad, M. Maire, D. Letourneur et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Deliv. Transl. Res, vol.2, pp.187-197, 2013.

, Mar. Drugs, vol.14, 2016.

Y. Ikeda, S. Charef, M. O. Ouidja, V. Barbier-chassefière, F. Sineriz et al., Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides, Biomaterials, vol.32, pp.769-776, 2011.

I. Barbosa, C. Morin, S. Garcia, A. Duchesnay, M. Oudghir et al., A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis, J. Cell Sci, vol.118, pp.253-264, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00172753

A. Synytsya, D. J. Choi, R. Pohl, Y. S. Na, P. Capek et al., Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens, Mar. Biotechnol, vol.17, pp.718-735, 2015.

L. Pereira, A. M. Amado, A. T. Critchley, F. Van-de-velde, and P. J. Ribeiro-claro, Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll, vol.23, pp.1903-1909, 2009.

X. Qiu, A. Amarasekara, and V. Doctor, Effect of oversulfation on the chemicaland biological properties of fucoidan, Carbohydr. Polym, vol.63, pp.224-228, 2006.

M. Sekkal and P. Legrand, A spectroscopic investigation of the carrageenans and agar in the 1500-100 cm ?1 spectral range, Spectrochim. Acta, vol.49, pp.209-221, 1993.

V. Friand, O. Haddad, D. Papy-garcia, H. Hlawaty, R. Vassy et al., Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells, Glycobiology, vol.19, pp.1511-1524, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415323

B. S. Kim, J. Y. Park, H. J. Kang, H. J. Kim, J. Lee et al., FGF-2 induces angiogenesis through JNK-and p38-mediated activation of AKT/MMP-2 signalling, Biochem. Biophys. Res. Commun, vol.450, pp.1333-1338, 2014.

J. J. Castellot, K. Wong, B. Herman, R. L. Hoover, D. F. Albertini et al., Binding and internalization of heparin by vascular smooth muscle cells, J. Cell. Physiol, vol.124, pp.13-20, 1985.

L. Li, T. Wan, M. Wan, B. Liu, R. Cheng et al., The effect of the size of fluorescent dextran on its endocytic pathway, Cell Biol. Int, vol.39, pp.531-539, 2015.

S. Mauray, E. De-raucourt, F. Chaubet, O. Maïga-revel, C. Sternberg et al., Comparative anticoagulant activity and influence on thrombin generation of dextran derivatives and of a fucoidan fraction, J. Biomater. Sci. Polym, vol.9, pp.373-387, 1998.

A. Cumashi, N. Ushakova, M. Preobrazhenskaya, A. D'incecco, A. Piccoli et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, vol.17, pp.541-552, 2007.

H. Thorlacius, B. Vollmar, U. T. Seyfert, D. Vestweber, and M. D. Menger, The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P-and L-selectin function in vivo, Eur. J. Clin. Investig, vol.30, pp.804-810, 2000.

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochem. Pharmacol, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

A. C. Lake, R. Vassy, M. Di-benedetto, D. Lavigne, C. Le-visage et al., Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1, J. Biol. Chem, vol.281, pp.37844-37852, 2006.

M. S. Patankars, S. Oehningerq, T. Barnett, R. L. Williams, and G. F. Clark, A Revised Structure for Fucoidan May Explain Some of Its Biological Activities, J. Biol. Chem, pp.21770-21776, 1993.

V. H. Pomin, Fucanomics and galactanomics: Current status in drug discovery, mechanisms of action and role of the well-defined structures, Biochim. Biophys. Acta, vol.1820, 1971.

N. E. Ustyuzhanina, M. I. Bilan, N. A. Ushakova, A. I. Usov, M. V. Kiselevskiy et al., Fucoidans: pro-or antiangiogenic agents? Glycobiology, vol.24, pp.1265-1274, 2014.

N. E. Ustyuzhanina, N. A. Ushakova, K. A. Zyuzina, M. I. Bilan, A. L. Elizarova et al., Influence of fucoidans on hemostatic system, Mar. Drugs, vol.11, pp.2444-2458, 2013.

M. C. Chen, W. L. Hsu, P. A. Hwang, and T. C. Chou, Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia, Mar. Drugs, vol.13, pp.4436-4451, 2015.

Y. Cho, E. J. Cho, J. H. Lee, S. J. Yu, Y. J. Kim et al., Fucoidan-induced ID-1 suppression inhibits the in vitro and in vivo invasion of hepatocellular carcinoma cells, Biomed. Pharmacother, vol.83, pp.607-616, 2016.

H. Teng, Y. Yang, H. Wei, Z. Liu, Z. Liu et al., Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma, Mar. Drugs, vol.13, pp.3514-3530, 2015.

M. I. Bilan, A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. E. Nifantiev et al., Structure of a fucoidan from the brown seaweed Fucus evanescens C, Ag. Carbohydr. Res, vol.337, pp.719-730, 2002.

S. Fermas, F. Gonnet, A. Sutton, N. Charnaux, B. Mulloy et al., Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis, Glycobiology, vol.18, pp.1054-1064, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01967643

S. Nakamura, M. Nambu, T. Ishizuka, H. Hattori, Y. Kanatani et al., Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization, J. Biomed. Mater. Res. A, vol.85, pp.619-627, 2008.

R. J. Naik, R. Sharma, D. Nisakar, G. Purohit, and M. Ganguli, Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency, Biochim. Biophys. Acta Biomembr, vol.1848, pp.1053-1064, 2015.

P. Saboural, F. Chaubet, F. Rouzet, F. Al-shoukr, R. B. Azzouna et al., Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction, Mar. Drugs, vol.12, pp.4851-4867, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01866736

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochim. Biophys. Acta Gen. Subj, vol.1790, pp.141-146, 2009.

. Cependant, il existe d'autres hypothèses qui proposent que les fucoïdanes, ayant la capacité de se lier au HBPs, pourraient également entrer en compétition avec les HBPs et à l'inhibition des leurs effets. Ceci suggère que l'activité pro-angiogénique du LMWF n'est pas liée à sa capacité à se lier aux HBPs, 2007.

, A l'inverse, le fucoïdane pourrait en absence de l'expression des GAGs dans un modèle de l'hyperplasie intimale, substituer leurs fonctions par un rôle préventif sur la dégradation du glycocalyx et finalement accélérer le processus de réendothélialisation, 2002.

, De plus, nous avons mis en évidence qu'en l'absence de GAGs endogènes, suite à l'action de 4-Nitrophenyl-?-d-Xylopyranoside, la migration des HUVEC et la formation des réseaux vasculaires, 2015.

, Nous avons également démontré que le LMWF pouvait modifier l'expression des HS en modulant l'expression et l'activité de l'héparanase (HPSE), l'expression de l'exostosine-2 (EXT-2) et des syndécannes-1

, De plus, nous avons mis en évidence que les enzymes EXT-2 et HPSE, et que le SDC-4, sont impliqués dans l'effet pro-angiogénique du LMWF, puisque quand nous inhibons leurs expressions par des ARN interférents (small interfering RNA, siRNA), le pouvoir pro-angiogénique du fucoïdane est modulé negativement

, EXT-2) et du catabolisme (HPSE) interfèrent avec l'activité biologique du fucoïdane suggérant que les chaînes HS seraient donc impliquées dans l'action du fucoïdane, 2015.

X. Ai, A. Do, O. Lozynska, M. Kusche-gullberg, L. U. Emerson et al., , 2003.

, Sulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling, The Journal of Cell Biology, vol.162, pp.341-351

A. N. Alexopoulou, H. Multhaupt, and J. R. Couchman, Syndecans in wound healing, inflammation and vascular biology, The International Journal of Biochemistry & Cell Biology, vol.39, pp.505-528, 2007.

S. Babykutty, S. Pp, J. Nr, M. Kumar, M. S. Nair et al., , 2012.

, Nimbolide retards tumor cell migration, invasion, and angiogenesis by downregulating MMP-2/9 expression via inhibiting ERK1/2 and reducing DNA-binding activity of NF-?B in colon cancer cells, Molecular Carcinogenesis, vol.51, pp.475-490

S. Balaji, A. King, T. M. Crombleholme, and S. G. Keswani, The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing, Advances in Wound Care, vol.2, pp.283-295, 2013.

K. J. Bame, Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans, Glycobiology, vol.11, pp.91-98, 2001.

S. Barquera, A. Pedroza-tobías, C. Medina, L. Hernández-barrera, K. Bibbins-domingo et al., Global Overview of the Epidemiology, 2015.

, Atherosclerotic Cardiovascular Disease. Archives of Medical Research, vol.46, pp.328-338

A. Beenken and M. Mohammadi, The FGF family: biology, pathophysiology and therapy, Nature Reviews Drug Discovery, vol.8, pp.235-253, 2009.

M. Bernfield, R. Kokenyesi, M. Kato, M. T. Hinkes, J. Spring et al., , 1992.

, Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans

, Annual Review of Cell Biology, vol.8, pp.365-393

O. Berteau and B. Mulloy, Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, vol.13, pp.29-40, 2003.

M. I. Bilan, A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. Ne et al., Fucus evanescens C.Ag. Carbohydrate Research, vol.337, pp.719-730, 2002.

H. Boccalon, P. Lehert, and M. Mosnier, Appréciation de la prévalence de l'artériopathie oblitérante des membres inférieurs en France à l'aide de l'index systolique dans une population à risque vasculaire, Journal des Maladies Vasculaires, p.9, 2000.

C. Boisson-vidal, F. Zemani, G. Caligiuri, I. Galy-fauroux, C. et al., Neoangiogenesis induced by progenitor endothelial cells: effect of fucoidan from marine algae, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.5, pp.67-77, 2007.

T. Bonnard, G. Yang, A. Petiet, V. Ollivier, O. Haddad et al., Abdominal Aortic Aneurysms Targeted by Functionalized Polysaccharide Microparticles: a new Tool for SPECT Imaging, vol.4, pp.592-603, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02439023

C. Bouvard, I. Galy-fauroux, F. Grelac, W. Carpentier, A. Lokajczyk et al., Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis, Marine Drugs, vol.13, pp.7446-7462, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01514447

T. V. Brennan, L. Lin, J. D. Brandstadter, V. R. Rendell, K. Dredge et al., Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation, The Journal of Clinical Investigation, vol.126, pp.207-219, 2016.

B. S. Brooke, S. K. Karnik, and D. Y. Li, Extracellular matrix in vascular morphogenesis and disease: structure versus signal, Trends in Cell Biology, vol.13, pp.51-56, 2003.

A. D. Cardin and H. J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions, Arteriosclerosis, vol.9, pp.21-32, 1989.

P. Carmeliet and R. K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nature Reviews. Drug Discovery, vol.10, pp.417-427, 2011.

S. Carulli, K. Beck, G. Dayan, S. Boulesteix, H. Lortat-jacob et al., Cell surface proteoglycans syndecan-1 and -4 bind overlapping but distinct sites in laminin ?3 LG45 protein domain, The Journal of Biological Chemistry, vol.287, pp.12204-12216, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00871195

J. J. Castellot, K. Wong, B. Herman, R. L. Hoover, D. F. Albertini et al., Binding and internalization of heparin by vascular smooth muscle cells, Journal of Cellular Physiology, vol.124, pp.13-20, 1985.

D. Chappell, N. Dörfler, M. Jacob, M. Rehm, U. Welsch et al., , 2010.

, Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion, Shock, vol.34, pp.133-139

F. Chaubet, L. Chevolot, J. Jozefonvicz, D. P. Boisson-vidal, and C. , , 2000.

, Relationships between chemical characteristics and anticoagulant activity of low molecular weight fucans from marine algae, Bioactive Carbohydrate Polymers, pp.59-84

M. Chen, W. Hsu, P. Hwang, and T. Chou, Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia, Marine Drugs, vol.13, pp.4436-4451, 2015.

F. Chevalier, D. Arnaud, E. Henault, O. Guillevic, F. Siñeriz et al., A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: towards a matrix-based therapy, European Cells & Materials, vol.30, pp.51-68, 2015.

C. Clapp, S. Thebault, J. Mc, and M. Escalera, Peptide hormone regulation of angiogenesis, Physiological Reviews, vol.89, pp.1177-1215, 2009.

S. Das, A. J. Monteforte, G. Singh, M. Majid, M. B. Sherman et al., , 2016.

, Syndecan-4 Enhances Therapeutic Angiogenesis after Hind Limb Ischemia in Mice with Type 2 Diabetes, Advanced Healthcare Materials, vol.5, pp.1008-1013

E. De-falco, D. Porcelli, A. R. Torella, S. Straino, M. G. Iachininoto et al., SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells, Blood, vol.104, pp.3472-3482, 2004.

R. Delcombel, L. Janssen, R. Vassy, M. Gammons, O. Haddad et al., New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation, Angiogenesis, vol.16, pp.353-371, 2013.

P. Desgranges, T. Louissaint, E. Allaire, B. Godeau, K. Kichenin et al.,

D. Barritault, A. Meddahi-pellé, L. Blanche, A. F. Feldman, L. J. et al., First Clinical Pilot Study on critical ischemic leg ulcers with Matrix Therapy ReGeneraTing Agent (RGTA ® ) technology, Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, 2002.

, Thrombosis, and Vascular Biology, vol.22, pp.1604-1609

I. J. Edwards, Proteoglycans in prostate cancer, Nature Reviews Urology, vol.9, pp.196-206, 2012.

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nature Reviews Cancer, vol.2, pp.161-174, 2002.

R. El-masri, A. Seffouh, H. Lortat-jacob, and R. R. Vivès, The 'in and out' of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate, Glycoconjugate Journal, vol.34, pp.285-298, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01461493

A. Elfenbein and M. Simons, Syndecan-4 signaling at a glance, Journal of Cell Science, vol.126, pp.3799-3804, 2013.

S. Fermas, F. Gonnet, A. Sutton, N. Charnaux, B. Mulloy et al., Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis, Glycobiology, vol.18, pp.1054-1064, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01967643

V. Friand, O. Haddad, D. Papy-garcia, H. Hlawaty, R. Vassy et al., , 2009.

, Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells, Glycobiology, vol.19, pp.1511-1524

J. Frueh, N. Maimari, T. Homma, S. M. Bovens, R. M. Pedrigi et al., Systems biology of the functional and dysfunctional endothelium, Cardiovascular Research, vol.99, pp.334-341, 2013.

M. Fujita, M. Ishihara, M. Shimizu, K. Obara, S. Nakamura et al., Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/nonanticoagulant heparin hydrogel in a rat hindlimb ischemia model, Wound Repair and Regen, vol.15, pp.58-65, 2007.

N. S. Gandhi and R. L. Mancera, The Structure of Glycosaminoglycans and their Interactions with Proteins, Chemical Biology & Drug Design, vol.72, pp.455-482, 2008.

S. Gingis-velitski, A. Zetser, V. Kaplan, O. Ben-zaken, E. Cohen et al., Heparanase Uptake Is Mediated by Cell Membrane Heparan Sulfate Proteoglycans, Journal of Biological Chemistry, vol.279, pp.44084-44092, 2004.

M. Gingras, P. Farand, M. E. Safar, and G. E. Plante, Adventitia: the vital wall of conduit arteries, Journal of the American Society of Hypertension: JASH, vol.3, pp.166-183, 2009.

S. J. Goodger, C. J. Robinson, K. J. Murphy, N. Gasiunas, N. J. Harmer et al., Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms, The Journal of Biological Chemistry, vol.283, pp.13001-13008, 2008.

J. J. Grootjans, P. Zimmermann, G. Reekmans, A. Smets, G. Degeest et al., Syntenin, a PDZ protein that binds syndecan cytoplasmic domains, Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.13683-13688, 1997.

O. Haddad, E. Guyot, N. Marinval, F. Chevalier, L. Maillard et al., , 2015.

, Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis, Marine Drugs, vol.13, pp.6588-6608

M. Heil and W. Schaper, Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis), Circulation Research, vol.95, pp.449-458, 2004.

D. Heymann, C. Ruiz-velasco, J. Chesneau, J. Ratiskol, C. Sinquin et al., Anti-Metastatic Properties of a Marine Bacterial Exopolysaccharide-Based Derivative Designed to Mimic Glycosaminoglycans, Molecules, vol.21, p.309, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01644773

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochemical Pharmacology, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

A. D. Holtkamp, S. Kelly, R. Ulber, and S. Lang, Fucoidans and fucoidanases--focus on techniques for molecular structure elucidation and modification of marine polysaccharides, Applied Microbiology and Biotechnology, vol.82, pp.1-11, 2009.

A. Horowitz and M. Simons, Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha, The Journal of Biological Chemistry, vol.273, pp.25548-25551, 1998.

M. Hristov, A. Zernecke, K. Bidzhekov, E. A. Liehn, E. Shagdarsuren et al., Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury, Circulation Research, vol.100, pp.590-597, 2007.

N. S. Ihrcke, W. Parker, K. J. Reissner, and J. L. Platt, Regulation of platelet heparanase during inflammation: role of pH and proteinases, Journal of Cellular Physiology, vol.175, pp.255-267, 1998.

Y. Ikeda, S. Charef, M. Ouidja, V. Barbier-chassefière, F. Sineriz et al., , 2011.

, Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides, Biomaterials, vol.32, pp.769-776

R. V. Iozzo and R. D. Sanderson, Proteoglycans in cancer biology, tumour microenvironment and angiogenesis, Journal of Cellular and Molecular Medicine, vol.15, pp.1013-1031, 2011.

Y. Ishida, A. Kimura, Y. Kuninaka, M. Inui, K. Matsushima et al., Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing, The Journal of Clinical Investigation, vol.122, pp.711-721, 2012.

E. Khor and L. Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, vol.24, pp.2339-2349, 2003.

B. S. Kim, J. Park, H. Kang, H. Kim, and J. Lee, Fucoidan/FGF-2 induces angiogenesis through JNK-and p38-mediated activation of AKT/MMP-2 signalling, 2014.

B. Li, F. Lu, W. X. Zhao, and R. , Fucoidan: structure and bioactivity, Molecules, vol.13, pp.1671-1695, 2008.

C. Luyt, A. Meddahi-pellé, B. Ho-tin-noe, C. , S. Guezennec et al., , 2003.

, Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, The Journal of Pharmacology and Experimental Therapeutics, vol.305, pp.24-30

M. Ly, T. N. Laremore, and R. J. Linhardt, Proteoglycomics: Recent Progress and Future Challenges, OMICS: A Journal of Integrative Biology, vol.14, pp.389-399, 2010.

T. Manon-jensen, Y. Itoh, and J. R. Couchman, Proteoglycans in health and disease: the multiple roles of syndecan shedding, The FEBS journal, vol.277, pp.3876-3889, 2010.

T. Manon-jensen, M. Hab, and J. R. Couchman, Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains, The FEBS journal, vol.280, pp.2320-2331, 2013.

N. Marinval, M. Morenc, M. N. Labour, A. Samotus, A. Mzyk et al.,

K. Bassand, K. Niemiec-cyganek, A. Haddad, O. Jacob, M. P. Chaubet et al., Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and reendothelialization potential of bioprostheses, Biomaterials, vol.172, pp.14-29, 2018.

N. Marinval, P. Saboural, O. Haddad, M. Maire, K. Bassand et al., Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum, Marine Drugs, vol.14, p.185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02438864

L. A. Martinez-lemus, The dynamic structure of arterioles, Basic & Clinical Pharmacology & Toxicology, vol.110, pp.5-11, 2012.

C. Mathieu, A. Chevrier, V. Lascau-coman, G. E. Rivard, and C. D. Hoemann, , 2013.

, Stereological analysis of subchondral angiogenesis induced by chitosan and coagulation factors in microdrilled articular cartilage defects, Osteoarthritis and Cartilage, vol.21, pp.849-859

S. Matou, D. Helley, D. Chabut, A. Bros, and A. Fischer, Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro, Thrombosis Research, vol.106, pp.213-221, 2002.

D. Mihov and M. Spiess, Glycosaminoglycans: Sorting determinants in intracellular protein traffic, The International Journal of Biochemistry & Cell Biology, vol.68, pp.87-91, 2015.

S. M. De-munnik, M. J. Smit, R. Leurs, and H. F. Vischer, Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors, Frontiers in Pharmacology, vol.6, p.40, 2015.

K. Muona, K. Mäkinen, M. Hedman, H. Manninen, Y. et al., 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb, Gene Therapy, vol.19, pp.392-395, 2012.

M. Murakami and M. Simons, Fibroblast growth factor regulation of neovascularization, Current Opinion in Hematology, vol.15, pp.215-220, 2008.

R. J. Naik, R. Sharma, D. Nisakar, G. Purohit, and M. Ganguli, Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency, Biochimica Et Biophysica Acta, vol.1848, pp.1053-1064, 2015.

L. Norgren, W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris et al., Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II), European Journal of Vascular and Endovascular Surgery: The Official Journal of the European Society for Vascular Surgery, vol.33, pp.1-75, 2007.

N. J. Patel, R. Karuturi, R. A. Al-horani, S. Baranwal, J. Patel et al., Synthetic, non-saccharide, glycosaminoglycan mimetics selectively target colon cancer stem cells, ACS chemical biology, vol.9, pp.1826-1833, 2014.

S. Patel-hett, D. 'amore, and P. A. , Signal transduction in vasculogenesis and developmental angiogenesis, The International Journal of Developmental Biology, vol.55, pp.353-363, 2011.

C. K. Payne, S. A. Jones, C. C. Zhuang, and X. , Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands, Traffic, vol.8, pp.389-401, 2007.

C. J. Pepine, The effects of angiotensin-converting enzyme inhibition on endothelial dysfunction: potential role in myocardial ischemia, The American Journal of Cardiology, vol.82, pp.23-27, 1998.

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seven-transmembrane receptors, Nature Reviews. Molecular Cell Biology, vol.3, pp.639-650, 2002.

M. Potente, G. H. Carmeliet, and P. , Basic and therapeutic aspects of angiogenesis, Cell, vol.146, pp.873-887, 2011.

A. Proudfoot, T. M. Handel, Z. Johnson, E. K. Lau, P. Liwang et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.1885-1890, 2003.

A. Purnama, R. Aid-launais, O. Haddad, M. Maire, D. Mantovani et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Delivery and Translational Research, vol.5, pp.187-197, 2015.

D. A. Pye, R. R. Vives, J. E. Turnbull, P. Hyde, and J. T. Gallagher, Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity, The Journal of Biological Chemistry, vol.273, pp.22936-22942, 1998.

R. Rahbarghazi, S. M. Nassiri, S. H. Ahmadi, E. Mohammadi, S. Rabbani et al., Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction, International Journal of Cardiology, vol.173, pp.453-466, 2014.

N. Ram, S. Aroui, E. Jaumain, H. Bichraoui, K. Mabrouk et al., Direct peptide interaction with surface glycosaminoglycans contributes to the cell penetration of maurocalcine, The Journal of Biological Chemistry, vol.283, pp.24274-24284, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00376511

A. C. Rapraeger, A. Krufka, and B. B. Olwin, Requirement of heparan sulfate for bFGFmediated fibroblast growth and myoblast differentiation, Science, vol.252, pp.1705-1708, 1991.

T. M. Reine, T. T. Vuong, A. Rutkovskiy, A. J. Meen, J. Vaage et al., Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLOS ONE, vol.10, p.145584, 2015.

D. Ribatti and V. Djonov, Intussusceptive microvascular growth in tumors, Cancer Letters, vol.316, pp.126-131, 2012.

D. Riou, S. Colliec-jouault, P. Du-sel, D. Bosch, S. Siavoshian et al., Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a nonsmall-cell bronchopulmonary carcinoma line, Anticancer Research, vol.16, pp.1213-1218, 1996.

C. J. Robinson, B. Mulloy, J. T. Gallagher, and S. E. Stringer, VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase, The Journal of Biological Chemistry, vol.281, pp.1731-1740, 2006.

V. Rouet, Y. Hamma-kourbali, E. Petit, P. Panagopoulou, P. Katsoris et al., A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis, The Journal of Biological Chemistry, vol.280, pp.32792-32800, 2005.

P. J. Roughley, The structure and function of cartilage proteoglycans, European Cells & Materials, vol.12, pp.92-101, 2006.

F. Rouzet, L. Bachelet-violette, J. Alsac, M. Suzuki, A. Meulemans et al., Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-107 rich thrombus and endothelial activation, Journal of Nuclear Medicine, vol.52, pp.1433-1440, 2011.

P. Saboural, F. Chaubet, F. Rouzet, F. Al-shoukr, R. Azzouna et al., Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01866736

, Myocardial Infarction. Marine Drugs, vol.12, pp.4851-4867

S. H. Schirmer, F. C. Van-nooijen, P. Jj, and N. Van-royen, Stimulation of collateral artery growth: travelling further down the road to clinical application, Heart, vol.95, pp.191-197, 2009.

S. Soeda, T. Kozako, K. Iwata, and H. Shimeno, Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action, Biochimica Et Biophysica Acta, vol.1497, pp.127-134, 2000.

I. Stein, M. Neeman, D. Shweiki, A. Itin, and E. Keshet, Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes, Molecular and Cellular Biology, vol.15, pp.5363-5368, 1995.

K. R. Stenmark, M. E. Yeager, K. C. El-kasmi, E. Nozik-grayck, E. V. Gerasimovskaya et al., The adventitia: essential regulator of vascular wall structure and function, Annual Review of Physiology, vol.75, pp.23-47, 2013.

B. Styp-rekowska, R. Hlushchuk, A. R. Pries, and V. Djonov, Intussusceptive angiogenesis: pillars against the blood flow, Acta Physiologica, vol.202, pp.213-223, 2011.

N. Suffee, H. Hlawaty, A. Meddahi-pelle, L. Maillard, L. Louedec et al., , 2012.

, RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans, vol.15, pp.727-744

M. I. Tan, Cell and molecular biology for diagnostic and therapeutic technology, Journal of Physics: Conference Series, vol.694, p.12001, 2016.

B. Trueb, Biology of FGFRL1, the fifth fibroblast growth factor receptor, Cellular and Molecular Life Sciences, vol.68, pp.951-964, 2011.

J. J. Tung, I. W. Tattersall, and J. Kitajewski, Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis, Cold Spring Harbor Perspectives in Medicine, vol.2, p.6601, 2012.

I. Vlodavsky, G. Abboud-jarrous, M. Elkin, A. Naggi, B. Casu et al., The impact of heparanese and heparin on cancer metastasis and angiogenesis, Pathophysiology of Haemostasis and Thrombosis, vol.35, pp.116-127, 2006.

I. Vlodavsky, M. Blich, J. Li, S. Rd, and N. Ilan, Involvement of heparanase in atherosclerosis and other vessel wall pathologies, Matrix Biology: Journal of the International Society for Matrix Biology, vol.32, pp.241-251, 2013.

T. T. Vuong, T. M. Reine, A. Sudworth, T. G. Jenssen, and S. O. Kolset, , 2015.

, Major Syndecan in Primary Human Endothelial Cells In Vitro, Modulated by Inflammatory Stimuli and Involved in Wound Healing, Journal of Histochemistry & Cytochemistry, vol.63, pp.280-292

Y. Wang, X. Yang, S. Yamagata, Y. T. Sato, and T. , Involvement of Ext1 and heparanase in migration of mouse FBJ osteosarcoma cells, Molecular and Cellular Biochemistry, vol.373, pp.63-72, 2013.

M. Yanagishita and V. C. Hascall, Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine, Journal of Biological Chemistry, vol.259, pp.10270-10283, 1984.

S. Ylä-herttuala, Cardiovascular gene therapy with vascular endothelial growth factors, Gene, vol.525, pp.217-219, 2013.

Y. Yu, T. Luo, S. Liu, G. Song, J. Han et al., Chitosan Oligosaccharides Attenuate Atherosclerosis and Decrease Non-HDL in ApoE-/-Mice, Journal of Atherosclerosis and Thrombosis, vol.22, pp.926-941, 2015.

Z. I. Morgan and R. D. , Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects, Heart, vol.97, pp.181-189, 2011.

E. Zcharia, S. Metzger, T. Chajek-shaul, H. Aingorn, M. Elkin et al., Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.18, pp.252-263, 2004.

F. Zemani, D. Benisvy, I. Galy-fauroux, A. Lokajczyk, S. Colliec-jouault et al., Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochemical Pharmacology, vol.70, pp.1167-1175, 2005.

A. Zlotnik and Y. O. , Chemokines: a new classification system and their role in immunity, Immunity, vol.12, pp.121-127, 2000.

L. Rolas, A. Boussif, E. Weiss, P. Lettéron, O. Haddad et al., Au cours de ma thèse j'ai également participé à la réalisation d'autres travaux. Voici ci-dessous la liste des articles correspondants, Gut, 2018.

, , vol.67, pp.1505-1516

N. Marinval, M. Morenc, M. N. Labour, A. Samotus, A. Mzyk et al., Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and re-endothelialization potential of bioprostheses, Biomaterials, vol.172, pp.14-29, 2018.

N. Suffee, L. Visage, C. Hlawaty, H. Aid-launais, R. Vanneaux et al., Pro-angiogenic effect of RANTES-loaded polysaccharide-based microparticles for a mouse ischemia therapy. Sci Rep, vol.7, p.13294, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01844657

?. Mondadori-dos-santos, A. Metzinger, L. Haddad, O. , M. 'baya-moutoula et al., Is Involved in Vascular Remodeling under Laminar Shear Stress, Biomed Res Int, p.497280, 2015.

, Nous avons démontré par la suite qu'en absence de GAGs sur les HUVEC, le LMWF garde toujours son potentiel pro-angiogénique. Nous avons mis en évidence que l'exostosine-2 (EXT-2), l'héparanase (HPSE) et le syndécane-4 (SDC-4), sont impliqués dans l'effet proangiogénique du LMWF, puisque quand nous inhibons leurs expressions par ARN interférence, le pouvoir pro-angiogénique du LMWF est diminué. Nous avons démontré, dans le modèle d'hyperplasie intimale chez le rat, que le LMWF a un effet opposé sur l'expression des SDC. En effet, le LMWF induit l'expression du SDC-1 et diminue celle du SDC-4 dans la néo-intima. Nos données indiquent que l'EXT2, l'HPSE et le SDC-4 sont impliqués dans les effets pro-angiogéniques du LMWF, suggérant que les changements du métabolisme des HS liés à l'angiogenèse induite par le LMWF offrent la possibilité d'une nouvelle approche thérapeutique pour le traitement des maladies ischémiques. Syndecans and enzymes involved in heparan sulfate biosynthesis and degradation are implicated in pro-angiogenic effects of low molecular weight fucoidan. Induction of angiogenesis is a potential treatment for chronic ischemia. In this study we propose the analysis of pro-angiogenic treatment with fucoidan, sulfated polysaccharide from brown seaweeds, which act as glycosaminoglycans mimetics. Herein we used the low molecular weight fucoidan (LMWF), which presents a good affinity for pro-angiogenic factors (VEGF, SDF-1/CXCL12). The LMWF was mainly internalized through human vascular endothelial cell (HUVEC) clathrin-dependent endocytosis (in 2h) in which GAGs were partially involved. Our results showed that LMWF induced migration and angiogenesis in HUVEC. Interestingly, in a GAG-free HUVECs model, LMWF still kept a pro-angiogenic potential. In addition, we reported the implication of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and syndecan-4 (SDC-4) in LMWF induced angiogenesis. LMWF-treated and EXT2-or HPSE-siRNA-transfected cells shows that EXT2 or HPSE expression significantly affects the LMWF pro-angiogenic potential. In addition, LMWF increased SDC-1, but decreased SDC-4 expression. We studied the LMWF implication in SDC-1 and SDC-4 expression in rat model of intimal hyperplasia after balloon injury. Our results showed that LMWF treatment of injured artery increased SDC-1 expression, L'ischémie se définit par la réduction de la lumière d'un vaisseau, ce qui provoque dans les tissus une baisse du flux sanguin, et une hypoxie locale. Pour lutter contre l'ischémie, différentes thérapies pro-angiogéniques ont été développées afin de stimuler la formation de nouveaux vaisseaux à partir des vaisseaux préexistants

. Mots-clés, Syndécannes, fucoïdane, angiogenèse, cellules endothéliales, héparanase, p.12

I. Lvts, G. U1148, . Biothérapies, and . Glycoconjugués, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin 93 000