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DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE
ACTION OF MULTIPLICATIVE INTEGERS

GUILHEM BRUNET

ABSTRACT. Let my1 > ma > 2 be integers. We consider subsets of the product symbolic
sequence space ({0,---,m1 — 1} x {0,--+ ,ma — 1})N* that are invariant under the action
of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres
and Solomyak and using a fixed integer ¢ > 2. We compute the Hausdorff and Minkowski
dimensions of the projection of these sets onto an affine grid of the unit square. The proof
of our Hausdorff dimension formula proceeds via a variational principle over some class of
Borel probability measures on the studied sets. This extends well-known results on self-affine

Sierpinski carpets. However, the combinatoric arguments we use in our proofs are more elab-

orate than in the self-similar case and involve a new parameter, namely j = llogq (}ZEEZ;DJ .

We then generalize our results to the same subsets defined in dimension d > 2. There, the

situation is even more delicate and our formulas involve a collection of 2d — 3 parameters.

1. INTRODUCTION
Let mqy > mgo > 2 and ¢ > 2 be integers. Let € be a closed subset of
Eml,mg = (-Al X AQ)N*’

where A; = {0,...,m; —1} and Ay = {0,...,mg — 1}. We can associate to Q a closed subset
of the torus T? by considering 1(£2), where 1 is the coding map defined as

[e.9]

o
T Yk
05 s € By (3257 ) e
2

k=1 k=1
Let o be the standard shift map on X,,, ;», and 7 be the projection on the second coordinate.
Closed subsets of X, 1, that are o-invariant are sent through 1 to closed subsets of T? that

are invariant under the diagonal endomorphism of T?
(z,y) € T? — (myz, mox).
A classical example of such subsets is given by Sierpinski carpets. Given
0#£AcC{0,--- ,m3 —1} x{0,...,mg — 1},

Key words and phrases. Hausdorff dimension, Box dimension, Symbolic dynamics, Self-affine carpets, Self-
affine sponges.
2010 Mathematics Subject Classification: 28A80, 37C45.



a Sierpinski carpet is built by considering
Q={(z,y) € Xy my, Yk > 1, (zg,yx) € A}

In that case, ¥(Q) is the attractor of the iterated function system made of the contractions
fag) : (xy) € T2 — (%, %) with (7,7) € A. When m; = mg = m, we obtain a self-similar
fractal and it is well-known that

: : log(#A)

Q)) = Q)= —"—"=

dimps(¥(2) = dima ((50) = {2 T,
where dimyg and dimj; stand for the Hausdorff and Minkowski (box-counting) dimensions
respectively. This is proved for example in Chapter 2 of [3]. More generally, as proved in [7],

if Q2 is a closed shift-invariant subset of X, ,,, then we have

i (0(6) = dimar (0() = 1712,
where h stands for the topological entropy. McMullen and Bedford independently computed
the Hausdorff and box dimensions of general Sierpinski carpets when m; > mg in [10] and
[1], which we will assume from now on. Furthermore, the Hausdorff and box dimensions of
Sierpinski sponges - defined as the generalization of Sierpinski carpets in all dimensions - were
later computed in [8].

Let
and

We will need the following metric on X, m, : for (z,y) and (u,v) in Xy, m, let

d((Tr, Yr) g1y (Uk, VR )je1)

— min{k>0, , , — min{k>0,
— max (ml min{k>0, (Tg41,Y0+1)7 (U1 11164-1)}7 m17mm{ > yk-&—l?évk-&-l}) _

This metric allows us to consider “quasi-squares” as defined by McMullen when computing the
dimensions of Sierpinski carpets. It is easy to see that for (z,y) € X,,, m, the balls centered
at (z,y) equals

By(z,y) =B _-n(z,y) = {(u,v) € Epyymos g =2k V1 <k <nand v, =y, V1 <k < L(n)}.

mi"
Using this metric on X,,, ym, the Hausdorff and box dimensions of €2 are then equal to those
of ¥(€). Thus from now on we will only work on the symbolic space. In this paper, our goal
is to compute the Hausdorff and box dimensions of more general carpets that are not shift

invariant. More precisely, given an arbitrary closed subset €2 of ¥,,, ,,, we consider

Xo = {(Tk, Yr)ie1 € Bmamas (Tige, Yiqe)i2o € Q for all i, q1i}.



Such sets were studied in [9], where the authors restricted their work to the one dimensional

case : they computed the Hausdorff and Minkowski dimensions of sets defined by
{(.Cvk)zo:l e{0,...,m—1}"", (754¢)2¢ € §2 for all 4, q)(z'} ,

where ) is an arbitrary subset of {0,...,m — 1}N*. It is easily seen that this case covers the
situation where m; = mgy in our setting. Their interest in these sets was prompted by the

computation of the Minkowski dimension of the "multiplicative golden mean shift"
{x = Z ok Tk € {0,1}, zrxor = 0 for all k:}
k=1
done in [4]. We aim to give formulas for dimy(Xq) and dimys(Xgq) in the two-dimensional
case, and then in all dimensions. Note that if € is shift-invariant, then X, is invariant under
the action of any integer r € N*
(Ths Uk )it = (Trk Yrk ) et -

For example, as in the case of dimension one we can consider subshifts of finite type on
Ymi,me- To doso, let D = {(0,0),(0,1),...,(0,mz2—1),(1,0),(1,1),...,(1,ma—1),...,(m1—
1,0),(m1—1,1),...,(m1—1,ma— 1)} and let A be a mymsy - sized square matrix indexed by
D x D with entries in {0,1}. Then define

ZA = {(:Bkayk)zozl c Eml,mza A((-rk:ayk)a (xk-‘rlvyk-‘rl)) = 17 k> 1}7

and
Xa=Xs, ={(@r Yk)he1 € Zonimas ATk, Yk)s (Tgh, Yqr)) =1, k> 1},

I :mm;;;;p 55
o

FIGURE 1. Approximation of order 4 of the set X4 for m; =3, me =2,q=2
and A a circulant matrix whose first row is (1,0,0, 1,0,0).
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FIGURE 2. Approximation of order 6 of the set X4 for m; =3, mo =2, ¢ =2
and A a circulant matrix whose first row is (1,0,0,1,0,0).

Note that further generalizations of the sets considered in [9] were studied in [12], in the

one-dimensional case as well.

The paper is organized as follows. In Section 2, we focus on the two-dimensional situation.
We first introduce in Subsection 2.1 a particular class of measures on Xg. We show that these

are exact dimensional and we compute their Hausdorff dimensions. This class of measures

is the same as that considered in [9], but in our case the parameter j = {logq (igg%;g”
comes into play when studying their local dimension. Indeed, this parameter plays a crucial
role in the definition of generalized cylinders whose masses are used to study the mass of
balls under the metric d. In Subsection 2.2, out of curiosity, we study under which condi-
tion the Ledrappier-Young formula (where the entropies of invariant measures are replaced by

their entropy dimensions) can hold for these measures, which are not shift-invariant in general.

In Subsection 2.3, Subsection 2.4 and Subsection 2.5, we compute the Hausdorff and
Minkowski dimensions of Xq, using a variational principle over the class of measures we
studied earlier. We show that there exists an unique Borel probability measure which allows

us to bound dimg(Xq) both from below and from above.

Then, in Section 3, we extend our results to the general multidimensional case. The combi-

natorics involved there become significantly more complex, as the study of the local dimension

4



of the measures of interest invokes some generalized cylinders which depend in a subtle way
on a collection of 2d — 3 parameters.

2. THE TWO-DIMENSIONAL CASE

2.1. The measures P, and their dimensions. Throughout the paper we will use the no-

tation Jm,nK = {m,...,n} if m < n are integers.

To compute dimg(Xq), we will use the classical strategy of stating a variational principle
over a certain class of Borel probability measures P, on Xq defined below, i.e we will show
that

dimpy(Xq) = r%axdimH(IF’M).

I

To do so, we will use the following classical facts (for a proof, see [3, Proposition 2.3]) :

Theorem 2.1. Let p be a finite Borel measure in %,,, ,,, and let A C %,,, ,,, such that
p(A) > 0.

e jf liminf,, o — > D for p-almost all x, then dimg(p) > D
< D for p-almost all z, then dimg(p) < D

< D for all x € A, then dimy(A) < D.

e if liminf,, o —

e if iminf, .o —

For (z,y) € Ymymy n > 1 and i an integer such that ¢ { i, we define (z,y)[;» =
(24, Yi) (Tgis Ygi) - - - (Tgri, Ygri) if ¢"i < m < ¢"li. Let u be a Borel probability measure on
2. Following [9] we define P, on the semi-algebra of cylinder sets of ¥,,, m, by

Fullootd = T (]

q’ﬂ
This is a well defined pre-measure. Indeed it is easy to see that P,([(k,1)]) = u([(k,1)]) for
(k,1) € Ay x A9, and for n+ 1 = ¢"¢ with ¢ 11,

Pul@,y1) - @ yn) @ng 1, yna)]) ol 91) (@i Ygi) - - - (Xgris Ygri)])
Pu([(z1,91) - - - (%0, yn)]) ([ i, Y1) (Zgis Ygi) - - - (Tgr—14, yqr_1i)])

)

whence

Pu(((@191) - @y = Y- Pulll@n,gn) - (@n, ) (6,9))-

(1,j)€A1x Az
Denote also by P, the extension of P,, to a Borel probability measure on (X, my, B (Zmi,ms.))-

By construction, this is supported on Xq, since € is a closed subset of ¥,,, ,,, and hence

k=1 uePrefy, o(2)



Let us now introduce some more notations. For p,¢ € N and v € ({0,---,m; — 1} x
{0,...,mg —1})? x {0,...,ma — 1}¥, define the generalized cylinder

[u] = {(,y) € Ty ma, ((2,9)lp, w(@® (2, 9))]0) = u},
where (z,9)|p, = (z1,y1) ... (p, yp), and set
Pref, (Q) = {u € ({0,--+ ,my — 1} x {0,...,ma — 1})? x {0,...,ma — 1}, QN [u] # @}
For all k > 1 we consider the partitions of Q defined by
o = {QN [, u e Prefy(Q)}

and
af = {QN[u], u € Prefyo(Q)}.
Let j be the unique non-negative integer such that

F< L oloslm) g
~ v log(ma)

Note that for all n > 1 large enough we have
¢n < L(n) < ¢ n.

Theorem 2.2. Let 1 be a Borel probability measure on Q. Then P, is exact dimensional and
we have

. I HE (al) , < HE (a2 . Val)
dimp(P) = (¢ = 1)) =27 + (g - (¢ My - 1) Y, —i—"
=1 4 p=j+1 a4

X HE (@2 . Vval)
_ _ m2\"p—j—1 P
+@-1DA-dy) o

p=j+1

Proof. Our method is inspired by the calculation of dimg(P,) in [9]. The strategy of the
proof is the same, nevertheless the computations will be more involved, due to the fact that
the P,,-mass of balls for the metric d is a product of p-masses of generalized cylinders rather

than standard ones as in [9)].



Let £ > j + 1. We will first show that for IP,-almost all (z,y) € Xqo we have

108 BuBul@ ) (o §~ i)

lim inf >
o n = 2 g
: ‘. HE (a2 Val)
+(qg- (@t y—1) Y T Lla P
p=j+1 gt
l 2 1
+@-1)A-¢7y) > Hmz(%_flv%),
p=j+1 e
and
. ogm (Pu(Bn(fE,y))) 2 J HY, (al)
1 1 < 1 2 p
imsup —ERTIEERE < (g 1)° ) =

¢ 2 1
: HE (a5 V)
+@-D@ -1 Y 5
p=j+1

¢ 2 1
. HE (o . {1V ay)
+@-D(1—gly) Yy Tt
p=j+1 9

N (¢ +1)log,,, (mims)

q* '
Letting ¢ — oo will yield the desired equality (cf. Theorem 2.1). To check these, we can

restrict ourselves to n = ¢‘r, € N. Indeed if ¢'r < n < ¢*(r + 1) then

_logm1 (PM(Bn<$7y))) > _logm1 (]P)M(qur(xay))) > r _logml (PN(Bqu(x7y)))
n - q‘(r+1) “r41 q‘r

I

which gives

—1 P, (Bn(z, —log,,, (Pu(Bge,(z,
g 108 BBl ) 108, (BB (@.3))

n—00 n T—00 qﬁr

The lim sup is dealt with similarly.

As proved in [9] we have

—log,,, (P, ([(z,9)]n > HE (a2
nlgglo 8, ( A;L([( Y)in])) =(qg—1) Z:l q;J(rlp) for P, — almost all (z,y) € Xq.
p:
Note that
PM(Bn($7 Z/)) = Z P, ({(1'17 y1) - - (2n, yn)(‘r;wrh Yn+t1) - - (le(n)a yL(n))}) )

/ ’
Tnt19T L ()



the sum being taken over all a7, ,... ,x’L(n) such that

|:(xla yl) e (xna yn)(x;1+la ynJrl) o (ale(n)v yL(n))i| N XQ ?é (Z)

. L(n) 171L0) L(n)
i€ ] qK,L(n)] = p|:|1] P qp—1]
such that ¢ 1 i. Note that if i € } q(;l), q(_)] then the word (z, )\ 20 is of length p. Recall
that j is defined by ¢/ < L 5 < ¢ Suppose j > 1. If 1 <p<j then (”) >n, so
|22 200 o 2o
If j+41<p</and/is large enough, then = L€ } q(p), 5,,( 2} thus we can partition

}L(n) L(n)} :]L(n) n ]'_I} n L(n)}

qp ’ qpfl qp ’ qp*.].*l qp*j*l7 qpfl

n L(n)
qp_j_l ? qF*l

In the case where ¢ € ] } we have

"% <n < "7 < PV < L(n) < ¢,

and if 7 € } L;,’}) 7} then

7qp J—1
N <n< @i <Pl < L(n) < ¢Pi.
If 5 = 0 then

e

o] = i< <l < L <

iE}L(n) n

1. .
o ’qp—l] = ¢ i <n<Ln) < i

Thus for any j we have

7
P, (Ba(z.y)) = [1]

=
~—
<
IS
<
=}
)
~—
—_

L(n
i :| q(p 7qp<_}:|

afi
4
. { H ( H )2 ([(x,, yz) e (xqp7j72,i7 yqp7j72i)yqp—j71i ce yqp—li:|) )
p=j+1 ie} vap(ni}
qfi

' < H a ([(l‘i’yi) s (Tgpiis Ygp=i—1i)Ygqrii - '-yq”‘”D ﬂ ' Dnla 1)



y) being the product of the remaining quotients (words beginning by (z;,y;) with i <

ere we used the notion of generalized cylinders we defined earlier

Dy (x,
K ([ s Ygr—1y D = Z H ({(m;,yi), e (mgp—liﬂyql’*li)}) )
T’y

u([ml,yz .. qp j— QZ,yqp ji—24 )yqp j—1; . yqp 1})

= z 1 (@i 3) - @iz Ygpms20), (@i Ygr-s11)s -+ (@i Ygp12)] )

;p—j—li”"’xlqpfli
M([(l‘u%) (@ gp-i—14s Yqp-3-10)Ygqp—is - - - Ygp—1 D
(xqp J 1i7qu—j—1i)7(x;p*jzaqu Jz) '(mgp—liayqpfli)})a

= Z M([(mz‘,yz’)---

/ o .
the sums being taken over the cylinders that intersect 2. Moreover we have as n — oo
2
n

Tap=ii g1y
L(n) L(n)] 1 (g—1)

-1 17 q T Lo~ p+1

J Yq
] -1 =g
)] ati} ~ Ma=U0 =0
vqP

1 . (¢— D@y -1

1|1 fig~ p+1 :

'q 1 q

} q 1 i the random variables

(':qu J 217yqp_j—2i)yqp—j—1i .. yqp 1 :|)>

Vo). Fixing j+1 < p <1

I

#{ie] qP ’qp

{

]qp]l’
n__ L)
p]17qp1

Note that for 7 € }
Yinp : (z,y) € Xg — —log,,, (u ({(fvzayz)
i . Qp—j—

are i.i.d and uniformly bounded, with expectation being H#, (
and letting n = ¢‘r,r — 0o, we can use Lemma A.2 and get that for P,-almost all (z,y) € Xq

’qu - o 2
n(qg—1)(1 — ¢iv) ZL Yinp(@,y) =2 Hi, (05 5 1V ay).
ié}ﬁyqp(fi}
afi
Thus
Z .
> (-1 —¢v) T YPYimp(2,y)
p=j+1 vqP i n(g—1)(1—¢77)
26} gp—I1—1 qp—l]
qfi
¢ 2 1
, HE (02 . 1 Vo)
_ _ A m2 J—1 P
Sz la-Dl-d7) X p .
p=j+1

Similarly if we define
— —log,,, (M ([yz . yqp—li)D) :

Zi7n7p : (.’177 y)



whose expectation is H* (al), for P,-almost all (z,y) € X we have
p my \Yp 1

wa TP L 2 Zme(ey) o HE (o),

hence

i (q - 1)2 Z qu+lzi7n,p(xay) N <q _ 1)2 i H#D (allﬂ)

nlag —1)2 r—00 p+1
L(n) L(n):| (q ) q

p=1
qP 7qp—1
qti
The third term is treated in similar manner. We have thus proved the first inequality. Now it

remains to get the second inequality using D, (x,y). It is easily seen that there exists C' > 0
such that for all b > a >0

‘#{z’eNﬂ]a,b], qu}—q;l(b—a)

<C.

Thus the number of letters in A; X Ay appearing in the words of the developed D, (x,y) is

dn:L(n)—i#{ieNﬂ}Lén) L(n)}, qfi}p

= p 7 gr—1
. < L(n) _pze:l (¢ — ;Zif(n)p W;r Ve
:Léj) [(64—1)—5 g
- 0+ ;zL(n) z(z; Do
On the other hand
T (q—;gjfm)p G e (ﬂ e,

s0 322,27 % < 400, Define
Sn={(x,y) € Xq, Du(z,y) < (2mamz)~""}.

Clearly P, (S,) <279, so0 P, (ﬂNzl U v Sqer) = 0, using Borel-Cantelli lemma. Hence for
P,-almost all (z,y) € Xq there exists N(z,y) such that (z,y) & S, for all n = ¢‘r > N(z,y).
For such (z,y) and n > N(x,y), using (1), we have

—log, (Du(2,y)) _ dnlogy, (2mimo)
n o n
< (€ +1)L(n)log,,, (2mima2) N ((€ + 1) log,,, (2mima)
- ng’ on '
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So

(¢ +1)log,,, (2mims)
7 :

—1lo D ..(x,
lim sup gml( - qfr( y)) <
r—00 qr q
Finally for such (z,y) we get the second desired inequality.

2.2. Study of the validity of the Ledrappier-Young formula. Here we will discuss the
validity of the Ledrappier-Young formula in this context. Recall that for p a shift-invariant
ergodic measures on Y, m,, the Ledrappier-Young formula is (see [8, Lemma 3.1] for a proof)
1 1 1
dimg(p) = ——h a—i—( - >h* 7),
)= ogtmn 7 * iogtma) ~ Toglmn) ) "=+”)

where & is the standard shift map on ¥,,,, 7 is the projection on the second coordinate and

hu(o) is the entropy of p with respect to o. This rewrites as

! )dime<u)+( ! !

(2) dimg (p) = log(m1) log(mg)  log(my)

) dime (. p0),

where for any Borel probability measure v on X, m,, dim.(v) denotes, whenever it exists,
its entropy dimension defined by
. . 1
dime(v) = lim —— > v([u])log (v ([u])),

_>
T (A x A

and where dim, (7,v) is defined similarly. We will show that this fails to hold for P,, in general.
This is expected since [P, is not shift-invariant in general. However, we will give a sufficient

condition on p for P, to satisfy (2).

Let (Pz)yeﬂ( Xq) be the 7«(P,) - almost everywhere uniquely determined disintegration of
the Borel probability measure P, with respect to w. Each P is a Borel probability measure

on Y, my supported on 71 ({y}), which can be computed using the formula

Y (T — lim IP)M ([(‘Tlayl)"'(xn,yn)yn-‘rl"'ypb
Fallelal < twh) = Jim, o (B) (1 - )

For some basics on the notion of disintegrated measure we advise [11] to the reader.

for m, (P,) —almost all y € 7(Xq).

Proposition 2.3. Let p be a Borel probability measure on Q. Then 7. (P,) is exactly di-
mensional. Moreover P% is exactly dimensional for .(P,) — almost all y € 7(Xgq), and we
have

essinf dimg(PY) = esssup dim.(PY).
y~rs (Pu) ( ”) y~1s (Pp) ( ”)

Finally
dime (. (Py)) + essinf dim,(P}) < dime(P,,),

yNW*(Pu)
with equality if and only if for all p > 1, for all I € o2, the map y € 7(I) — p¥(I) is almost

surely constant.
11



Proof. First note that for (z,y) € Xy, my

@) (vl = Y [Te([@ole]) =TT X w([@w)lr]) = Prdly ).

T, Tn t<N 1< Tijyees Tl
qfi qfi

Thus 7.(P,) is a Borel probability measure supported on 7(Xq) = Xr(q), which is equal to
Pr, 4. Thus, using the one-dimensional case studied in [9] we easily get that 7, (IP,) is exactly

dimensional with

< Hr (ol
dime(ﬂ—*(Pu» - (q - 1)2 Z qp(-l—lp)
p=1

Now we study P},. Observe firstly that for ¢ such that ¢ {1, the map
¢i:y € m(Xa) — yls = (Yge)iZo € T(Q)
is measure-preserving, i.e. (¢;)«(Pr,,) = mp. Let p>n > 1. For (z,y) € Xq we have

Py ([(z1,91) - - (T Yn)Yns1 - - - Ypl)
Pr, ([yl cee yp])

0 w({nm) o (rgmivpi) (T voss) - (w00 v)])

i<pz'

_ak ahi ;Zi
0% w(lehm - (g u)])
g T
_ H 1% ({(l’“ y,) . (.qu—1l-, qu—li) qui - .yqél})
I wd)

qfi
where ¢*~1i < n < ¢*i < ¢%i < p < ¢"T1i. Using the remark above and letting p — oo we
deduce that for m,(IP,) — almost all y

(Bu)? ([ala] > {y}) = T u ([aloz] x ulsn}).-
qti

We will use the P, - almost everywhere defined i.i.d. random variables

Xip : (w,y) € Xo — —log(us ([els] < {yl}) for gt

whose expectation is

oo (L o (o (o] < (313)) A ) Y. (Bu)) )
_ (A, (241,,)) d(m(P)(5)

(Xa)

- HM (A, () d(mep) (y),
w(§2)

12



where Q, = 771 ({y}) N Q and A, is the partition of €2, into cylinders of length p on the first
coordinate z, if x| Jr 1s of length p. Using again the same reasoning as in the one dimensional
case when computing dimg(P,) (see [9]), we get that for m,.(P,) — almost all y, P} is exactly

dimensional and

dime®}) = (g =17y [ Aoy,
p=1"T

Now we have

[ B (8 () dre) )
=/ > WDkl D))

== 30 [ P ) sl (07 ())dren) 1)

Iea?
== 3 [ ) og(undms) )
Iea?
p(I) v (I)
< _zgg W*M(W(I»(/W(I) Wd(ﬂ*u)(y)) log (/W(I) Wd(ﬂ*u)(y))
_ o e
B %:2“ log (mu(w(])))

=H “(a12,|a11,),
using Jensen’s inequality. The function x € [0, 1] — —zlog(x) being strictly concave, this is

a strict inequality unless for all p > 1, for all I € oz%, the map y € n(I) — p¥(I) is almost
surely constant.

Using Lemma A .4 we get

Corollary 2.4. If for all p > 1, forall I € a , the map y € n(I) — p¥(I) is almost surely
constant, then P, satisfies the Ledrappler-Young formula :

1 1 1
dim¢(P,) + (

dimpy (Py) = m log(mz) - log(m1)

) dime (74 (Py,)) -

This sufficient condition is equivalent to saying that for allp > 1, forall I = [(z1,y1) ... (2p,yp)] €

o2, for m,p-almost all y € w(I) we have

) aen). . )
W= iw® - wlmw)

For instance, this is clearly satisfied when p is an inhomogeneous Bernoulli product on €2. In

that case P, is not shift-invariant in general. However, we can easily build examples where
this does not hold.
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Example 2.5. Suppose that j = 0. Then there exists 2 and p a Borel probability measure on

Q) such that

o
log(m1)

1 1

dimp (P,,) log(my)  log(mi)

dime(P,) + ( ) dime (. (P,)).

Indeed, using the property H*(a2_; V o) = H*(og|a2 ) + H*(aj_;) we have

O HHE (o2 00 alla?
dimp (P,) = (¢ —1)* ) ngiilp) +g-D1-9Y Mj%l)
p=1 q p=1 q
and
. 1 .
oty S0 P) (ot = gy ) ()
= Hpy (0p) 1 1\ & HAa))
=(g—1)%) Tt +(g—1)? (log(mg) - log(m1)> > o

p=1 p=1

It is then enough to choose €2 and u such that
. Hi(ab) =0,
. H“(all)\ag_l) =0 for all p > 2,
« H¥(og) >0 forp>2.
Such Q and g yield the desired example.
2.3. Lower bound for dimpy(Xq). We are now interested in maximizing dimg(P,) over all
Borel probability measures 1 on €. We define first the ;" tree of prefixes of Q, which is a
directed graph I';(€2) whose set of vertices is (Jj—q Prefy, ;(£2), where Prefy ;(©2) = {@}. There

is a directed edge from a prefix

w=(21,y1) - (T, Yk )Ukt1 - - - Yhtj

to an other one v if

v = (9017 yl) s (fﬁk, yk)($k+1, yk+1)yk+2 s Ykt Yk+j+1

for some xj41 € {0,...,m1 — 1} and yp441 € {0,...,ma — 1}. Moreover there is an edge
from @ to every u € Pref; ;(2). I';(Q2) is then a tree with its outdegree being bounded by
mime (except the first edges from &, which can be more numerous).

Lemma 2.6. Let u € Pref, ;(Q) and I', ;(€2) be the tree of followers of w in I';(©2). Let
2 Vau,5 ()
Va5 (£2) be its set of vertices. Then there exists a unique vector ¢ = t(u) € {1,m;(q”]

such that for all (z1,v1) ... (Zk, Y&)Yk+1 - - - Yrtj € Vi i ()

@iy
b

(3) (x17y1)---($k,yk)yk+1-~~yk+j_/ / t(xlvyl)---(l'k7yk)(x;€+1vyk+1)yk+2---yk+jy;€+j+1 )
Yktj+1 \Tk+1

14



the sums being taken over the followers of (x1,y1) ... (Tk, Yk)Yk+1 - - - Yktj N Ty 5 ().

_2 Vi (©)
Proof. Let Z = [1,m§(ql)] and F': Z — Z be given by
. 1
v\ Ty
F(z(wl7yl)~-~(55k:yk)yk+1~--yk+j) = Z Z B(@1,y1)-(@hyk) (@ g 3 Yot 1) Yhet2-Yht Vi 11

Yitjr1 \Th1
We can see that F' is monotone for the pointwise partial order <. For z, 2 € Z we have
2 <2 = F(2) < F(¢).

Denote by 1 the constant function equal to 1 over Z. Then 1 < F(1) < F?(1) < ..., so by
compactness (F™(1)),>1 has a pointwise limit ¢, which is a fixed point of F'. Let us now verify
uniqueness. Suppose that ¢ and ¢’ are two fixed points of F' and that ¢ is not smaller than #’

for < (without loss of generality). Let

w=1inf{€ > 1, t < &'}

2

Clearly w < m;(“l), and by continuity we have t < wt’, so w > 1. Now

t=F(t) < F(wt') = wiF(t) = wit,

contradicting the definition of w.

Furthermore we define

b= (X (IZ,f(ma,y;)ny._,y;ﬂ)qj”);-">;);-

! ! !
1 2 Yit1

Proposition 2.7. For u = (z1,y1) ... (T, Yk )Yk+1 - - - Yetj € Prefy ;(Q) define

giy—1
- t($17y1)y2~~yj+1 (Zw’l t(xl17y1)y2"'yj+l)

p([u) -
= ENER NN
T(E (2 (A (Z (Stemmnn) ) )"
P=0 Y, Yirap Yigr T

. qiy—1
bwn,y1). (@ Yp)Up 1 - Up s (Zm’; t(l"l7y1)~~~(x;a’yp)yp+1“'yzH—j)
' H Py )
p=2 (z1,91)--(Tp—1,Yp—1)Yp---Up—14j
where there are p + 2 sums and p exponents % in each term of the first product. This defines
a Borel probability measure on € such that P, is the unique optimal measure, i.e. such that

dimg (P,) is maximal over all Borel probability measures 1 on 2. Moreover for this measure

15



we have dimg(P,) = % log,,,(tz). Using Theorem 2.1 we deduce that

dimp(Xq) > L= log,,, (to).
Proof. Let
L, HY,, (o) S Hp(f i Vay)
S@u) = (-1, —0F +@- DA -dy) D, =
p=1 p=j+1

00 w 2 1
—i—(q—l)(qjﬂfy—l) Z HmQ(a vap)
p=j+1

We try to optimize s(£2, i) for i a Borel probability measure on §2. Let S(£2) = max,, S(£2, u1).
Recall that for some measurable partitions P,Q of ) we have

HEL,(PIQ) =) <— > u(PlQ) long(u(PlQ))> Q)

QeQ peP
Let p > j + 2. We have

) 1\ _ r7p (2 1.2y, 1 w2y, 1
ng (apfjfl \% ap) - ng (Oép,j,1 \ ap|a/1 v ajJrl) + Hm2 (al \% ajJrl)
and
w2 1\ _ p7p (a2 1.2, 1 w20 1
Hf (oo, Vo) = Hp (oo, 5 Voaglay Vag, ) + HE (a7 Vag,).
Moreover
) 1.2y, 1
Hy,(op 51 Voglai Vag,)
o H(z1,91)v2--¥j41 2 1
- Z 0@, y1) ..y s (O‘p—j—2 Vi (Q($1,y1)y2---yj+1>)
T1,Y1,Y25-5 Y541
and
o2 1.2, .1
Hp (ap_ i Vg lay Vajy)
o H(z1,91)v2--¥j41 2 1
Z 9(117y1)y2~-yj+1Hm2 (O‘p*jfl Viay g (Q(Il,yl)yzmyﬂl)) )
T1,Y15Y25- Y5 +1
where

Otz1 )y ayer = H((T1,91)Y2 -+ Yj41]),

and H#(xl’yl)y%myﬂl (ag—j—2 v azlo—l (Q(mhyl)yz..yj-&-l)) is the entropy of the partition of Q($11y1)92...yj+13
the follower set of (21, y1) in Q with ya ... y;j41 being fixed, with respect to @ 1,91)yo..y;41 WHICH
is the normalized measure induced by g on Qg y1yy,..y,,,- Then
L Hi, () (g =1)(1—g'y) (-1
_ 2 mo \Yp q qay 1 g 2 1
S u)=(q—-1) Z q;+1 + TR HE, (o) + Tﬂfﬁz (1 Vajiq)
p=1
1
+ a Z 0(I17y1)y2~--yj+1s (Q($17y1)y2-~~yj+l’/'L(Z'lyyl)yZ-nijrl)

T1,Y1,Y2;-- Y541

16



Observe that the measure is completely determined by the knowledge of 64, 4,)y,..4;,, and
M(@1,91)ya..y;41 TOT all (z1,91)y2 - .. Yj+1. The optimization problems on Qa1 y1)ya.y;a PEING
independent we get
L\ Hp, (o) (g —1)(1—g'v)
S(Q) = max g—1)>2 M2 P2y . HE (o}
( ) q(w1,y1)yz-~«yj+1( ) pz:l qp+1 q]+1 mQ( ]+1)
-1
+ M= D ot val,)
1
+ 6 Z 0($1791)92--~yj+ls (Q(xlvyl)y2-~~yj+1)
T1,Y1,Y2;5-Yj+1
After factorizing this is
qg—1 1 0 6
S(92) = max (HﬁL2 (B1) +— Z 0y, ( — Z % log,,,, < ;11/2
q E v Yn v
1 0 0 0
4+ = Y1y2 (_ Y1Y293 10 < y1y2y3>
q % Oy, % Ogry> "2\ Oy
+ lz 9y1y2y3 ( 4 qj7 Z 0y1‘..y]~+1 ( . Z g(xl,yl)yg...yj+1 logm <6(x17y1)y2~~-yj+1>
q° Oy, Yj+1 9?!1--4}]' 71 0y1...y]~+1 0y1-~~yj+1
1 0@ ,9)y2.yj1

(g —1) ; Oyy...y; 11 ( ey y,7+1)

We can now recursively optimize these quantities. First fix y1,...,y;+1. To optimize the last

part of this expression use Lemma A.1. This gives

S(Q(I1vy1)y2myj+1)

~v(g—1)
9(117y1)y2myj+1 _ My
0 .
Yi--Yj+1 s Q(le,y1)y2~»yj+1
v(g—1)
Zx’l mg

and

9(331 Y1)Y2.--Yjt1 6(1‘1 Y1)y2.--Y; 1 9(50 ) j
B , log,, , Yitl | Ly Y2 Yitl g () N .
; 0y1~~~yj+1 2 ‘9y1-..yj+1 7(@[ _ 1) ; ‘9y1-..yj+1 ( (1,91)y2 Z‘/J+1)

o (Q(9J1’y1)92~~yj+1>

_ v(g—1)
= logm2 Z Moy
x1

17



Using again Lemma A.1, we get M

, and so on. This gives us the weights 9(x1,y1)y2...yj+1v

which are equal to

¢y—1
A(@1,y1)y2--Yj+1 (Zz’l Z(xﬁ,yl)yz---yjﬂ)
]

]1:[ ( Z ( Z ( < Z (Zz(x’l,yl)yg-..yj—py§+1p'“y§'+1>qw>q”'>q>q> q ’

! ! !
P=0 Yl Wi, Yipr T

8 (9(117y1>y2-»-yj+1> a5(Q)

_ v(g—1) _ q—1 .
where Z(z, 1)y = M2 and zg = my" " . In particular we get

=N (S (Srmnn) ) )

! ! ! !
Y1 2 Yj+1 Ty

Now let us consider Q,, for u = (z1,y1)y2 . . . yj+1 € Pref; ;(2) fixed. The optimization problem

is now analogous on this tree, but simpler : we now have to optimize the quantity

(q — 1)(1 - QJ’Y) H(zq,y1)yg--ys 1
qj+1 Hm21 1)Y2--Yj41 (Oéj+1 (Q(xl,yl)yg.,,yj+1))

(g —1) H“(ll W1Y2-- Y41
q

1

Sy

q T2,Yj+2 H(Ilvyl)y2~~-yj+1

" (a% \ a}+1 (Q(m1,y1)y2~~w+l))

0(931,?41)(3327y2)y3~~yj+2 g

(Q(l‘l7y1)($27y2)y3---yj+2> ’

which is after factorization

g—1 o
gt <_Z

1,Y1)Y2--Yj+2 log (0(11,y1)y2-~yg‘+2>
ma
Yiro 0($17yl)92---yj+1

e(ﬁl,yl)yz---yjﬂ
+ qj,y Z 9($1,y1)y2-~yj+2 (_ Z

Yjte ©(@1LY1)Y2--Yj41 9 6(5517?/1)92~~~yj+2

21,91)(T2,Y2)Y3--Yj+2
e(wl,yl)yz--.yj+2j 5 (Q(m,y1)(x2,y2)y3...yj+2) )>

O

z1,91)(T2,Y2)Y3.-Yj -2 1 ‘9(931,y1)(3327y2)y3~~yj+2
Ogmg 6(

T1,Y1)Y2--Yj42

+1)Z

v(g—1

O

This gives the weights

¢’v—1
0($1,y1)($2,y2)y3...yj+2 . Z(z1,91)(22,Y2) Y3 Yj+2 (Z ! Z(wl7y1)($'27y2)y3---yj+2)

0 _ Lty ’
(@1,51)y2--Yj1 Z(21,91)y2--Yj41
S(Q(zl,y1)(I2,y2)y3-~yj+2> S(Q(Ibyl)yzmy]url)
: _ v(g—1) _ v(g—1)
with Z(w1,91)(w2,y2)ys.yie2 — 102 » A1 y1)Y2- Y41 T2 and
@y
qj+1
Z(xlyyl y2 Yi+1 Z Z Z‘17y1 (‘r27y2)y5 yj+2

z!

J+2 2

18



This is precisely equation (3) at the root of the graph I', j(€2). The problem being the same
at each vertex for Iy, ;(€2), for all u € Pref; (), we can repeat the argument for the entire
graphs. We also get the given formula for the optimal measure from the form of all optimal

probability vectors that we found. The solutions z = z(u) of the systems (3) which we get
—2 7V, (©)

this way are in [1, my Y , thus we have z(u) = t(u) for all u (indeed for all £ > 1, for

all v € Pref;, ;(Q2), for all ;1 on 2, we have dimg(P,) < 2, so S(€,) < 2).

2.4. Upper bound for dimy(Xgq).

Theorem 2.8. Let . be the Borel probability measure on €2 defined in the last theorem, and
let P, be the corresponding Borel probability measure on Xq. Let (z,y) € Xq. Then

lim inf 2 LP(Ln) < l0g,,, (t).
We deduce that dimy; (Xq) = -+ log,p, (t).
Proof. Recall that
— 1080, (Pu(Bu(2,)) = =~ 108y (1 ([(@19) (Bis vai) - - (@grm1is Ygrr)gpi - Y] ) )
£L

where k and ¢ are determined by i < ¢i < ... < ¢*li <n < qgfi <---<¢'i < Ln) < ¢t
in each term of the sum.

Suppose first that j = 1 for the sake of simplicity. We have

t(xl,y1)y2 (Zz’l t(z’l,yl)?ﬂ)qvil (Zyé (lel t(x&’yl)yé)q'y)

ty

1—gq
q

([, y1) . (T, yk)yks1]) =

qv—1

k

H bar ). (wp ) up 1 (Zaz; t($17y1)~..($§,,yp)yp+1>
%y

p=2 (z1,91) - (Tp—1,Yp—1)¥p

)

1—gq

t(ﬂﬂl,yl)yz (Zw'l t(wivyl)?ﬂ)qv_l (Zyé (Zmll t(”Cﬁ’yl)yé)q’y) '

p([(@1,91) - (Th—1, Y1) YkYk+1]) = to

qy—1
ban,y1).(@p,yp)yp 1 (Zw; b 7y1)---(x;,yp)yp+1)

2y
p=2 (z1,y1)-(Tp—1,9p—1)Yp
qy
(Z:ﬁ; t(m,yll--(ﬂfﬁwyk)ykﬂ)

a?
(®1,91) - (Th—1,Y—1) Yk

for k > 2,
19



1—g
(fol t(z;,yl)yz)w (Eyé (Zwi t(”ﬁ’yl)yé)m) ’

ty

p([y1y2]) =

and

1
a7
(20 (Lt tr o) )
ty '
For each k < L(n), we can write k = ¢"¢ with ¢ { i for some unique (r,i). Now, developing
the product P,(By(z,y)), we pick up
. i for each i < L(n) such that ¢ 11,

w(y]) =

— ATy
t(xi:yi)"'(mq"iquri)qu-’rli for each = ¢"i < n,

1

s for each xk < {%J : that is because for these x we have ¢’k =

(x4,94)-- ( TqriYqr z) 7“+1'

q" 2% < L(n), and for x > {%Q)J we have ¢k > ¢ {L(n)J +q¢? > L(n).

qav
Zx qTi t (z4,9i)- qri»yqri)yq'rJrli) for each S n,

(

¢ (Z b i) riquri)qu-Fli)q’y for each n < < {@J’
(=,
(

( o Ll o)y, )qA/)l%q for each ¢ < [@J such that ¢ {1,

1
arN ¢ .
Sy, (Tet et ) )" for cach [£2] <i < L(n) such that g
Thus if we define

R(k) = logm2 (t(xi,yi)(xqi,yqi)---(J»‘qri,yqn)yqrﬂi)
for k = ¢"i with ¢ 11,

R( ) 10gm2 Z t -'E'Lyyz (quyyqz) ( qTi YqTi )y r+1;

q i

for k = ¢"i with ¢ {4, and

i<n, gt v,
we get
10g,,,, (Pu(Bn(z,9))) = nu), — v¢* {L‘;?)JUVH +q {LE;)J T*)J nu,
+ gL(”)U%(n) — {EIH)J U?[LTHJ #{i €J1, L(n)K, q1i}log,,, (tz)



Getting back to the general case, let us define j + 2 sequences as follows. At first, set

> R(k),
k=1

R(k) up =

k=1

1 _
Uy =

S|
S|

where

R(K/) = 1Ogm2 (t(ivi7yi)(Iqi7yqi)~~'(wqri’yq"”i)yq'ﬁLli-~-yqr+]’i)

if kK = ¢"i with ¢t 4, and

R(K) =108m, | D tas) @aistiai) - @it gr1 -y
/

T
if kK =q"i with ¢{4. Then, for 3 <k <j+2let

i 1 1
1 PN g 7\ a
k _
Uy, = - Z logm ( Z ( Z < .. (Z <Zt($;7yi)yqi---y;ji> ) .. ) ) )7

1 . .
where there are exactly k — 1 sums and k — 3 exponents 7 in each log,,, terms. It is easy to

see that all these sequences are nonnegative, bounded with
ViI<k<j+2, nh_)IrOlounH—un:O.

Let € > 0. Using the definition of p we can get the following expression for n large enough,

which will be justified when studying the case d > 2

108, (Bu(Bu(@v))) __ ¢! | L(n) n n_a @ | L)
Lo _VL(H){QJ'“JUEQJ_L(H) 2 i

1 4= (| L(n) 1| L(n)
*mz(bﬂyqbﬂﬁ

qi—k

#{i € J1,L(n)K, q1i}
L(n) lognu(t@)

< (m ) o ( ‘“TLS’J)

j—1 1 )
e (“’Efw - “'E?m)

L4

log,,, (tz) + €.

To conclude we now use Lemma A.3 and then let € — 0.

Example 2.9. If Q is a Sierpinski carpet, then clearly Xq = €. Using uniqueness in Theorem

2.6 we deduce that the & do not depend on x; and y;. We call them ¢

T1,Y1)Y2--Yj+1 Y2 Y1t
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Equation (3) now reduces to
! j i
W N ()T Y
Yj+2
where N (y2) = #{z2, (v2,y2) € A}. Thus

I @ty 7 !
ty2~~~yj+1 = N(y2) Z ( ty3-~~yj+2> )

Yi+1 Yi+1 " Yj+2

and so on. After having summed on the different coordinates we get

S(S((E()) )) = (Sver) ™

Y2 Y3 Yj Yj+1

9
So finally ty = (Zyz N(yg)“Y) ! and dimy (Xq) = log,,,, (Zyz N(yg)w), which is as expected
the McMullen formula. Also, we check that the maximizing measure is the Bernoulli product

measure used by McMullen.

Example 2.10. Let ¢ = 2, my = 3, mg = 2 and D = {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.
We have j = 0. Let

011111
011111
A:011111
111010
011111
111010

A is a 0 — 1 matrix indexed by D x D. Let

Xa=A{(xr, yu)iz1 € B32, A((Tr, Yr)s (T2r,y2r)) = 1, k> 1},

We look for the solutions t of the systems of equations described in Lemma 2.6. Using

uniqueness we know that

L0,00 = t0,1) =ta,0 =0 a1 = e

Moreover
7=t +t " (tiogy + g+t T (to0 + 2t !
(0,0) (1,0) T 1(2,0) 0,1) T Y1) T2u) (0,0) (0,0) Ly) >

,
0 = (t(ovo) +ta0) + t(QVO)) + 10y = (37 + Dty ),
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1\
thus ¢4« = 2715?070) + <t(070) +2(37 + 1)% t5070)> . Finally we have

(0,0)

o ¥ vy . R v
g = (t(170> +1(1,0) +t<27o>) +(t<o,1> 1) +t<2,1>) =3 t(0,0)+(t(0,0) +2(37 4+ 1) t(0,0)) :

Using Scilab we get (o gy =~ 7.1446, thus dimpy (X4) = 1logy(ty) ~ 1.878.

2.5. The Minkowski dimension of Xg.

Theorem 2.11. We have

) I log,,, (|Prefy (02 C o log,,. (|Pref,_j_1 j+1(2
dimy;(Xq) = (¢ —1)? Z -l p+10,p( ) + (=11 —¢y) Z .l ppj Li+1(2)))
p=1 4 p=j+1 q

: o log,, ([Prefy—;,;(©2)])
+@-D@ -1 Y 2 qpﬁ 2

p=j+1
Proof. Recall that, by definition

10g,,, (Prefy, 1(n)—n(X
dim,(Xq) = lim inf 08, (Prefn,1(n)-n(Xa))
n—oo n

We can again fix £ > j + 1 and take n = ¢‘r with » — oo in this liminf. Now using the

computations used in the proof of Theorem 2.2 we get

J n n
g, (Prety (X)) 2 3 # {i € | 2L 2] g 4} 1og,, (Prefo ()

, L ,
#{ie] ] ot os (Pret 1)

* {ie| B, 2] ati}tog, (Prefys @),

qp ’ qp*jfl

On the other hand

logml (Prefn,L(n)—n(XQ)) < Z # {Z S :| Lq<;L>7 szill)

-1 } ,qh’} log,, ([Prefo ,(Q)])

3
=

L
L
+ 3 #{ie] B o] atifton, (Prety s (@)

+ 3 #{ie] B I atif g, (Pret, s @)

+ log,,, (m1ma2)dy,

by putting arbitrary digits in the remaining places (d,, being defined in 1). Remember that
dp, < (HZ)ZL(”) + CW;I). By letting r — oo we obtain
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L. 108, (|Prefy ,(Q2)]) £ log,,, ([Pref,j_1;11(Q)])

dim ), (Xo) > (¢ - 1)) o +g-1(L—¢) Y >
p=1 q p=j+1 q
¢
~ 10, (IPref, 15 (©)])
+1 m P—J,J
=Dy 1) 3
p=j+1
and
_— I 1 Prefy,(Q2 A Pref, ; 14+1(Q
dimy (Xq) < (¢—1)*) O8ms| ;flo’p( D +@-D1=¢y) > O, (|Pre Pp] 1i+1(€)])
p=1 ¢ p=j+1 q
¢
- 10g n, ([Pref, 5 (©)])
+1 m P—J>]
=Dy -1 Y s
p=j+1
(41

+ log,,,, (mimz) £

Since /£ is arbitrary we can conclude.

Proposition 2.12. We have dim,;(Xq) = dimy(Xq) if and only if the following four con-
ditions are satisfied

the tree I';(12) is spherically symmetric.

= #{x1, (x1,y1)y2...yj+1 € Pref; ;(©2)} does not depend on y; ...y 41 € Prefy j41(Q)
= for 1 < p < j, #{ypt1, Y1...yps1 € Prefy ,11(Q)} does not depend on y; ...y, €
Pref07p(Q)

for p > 2, #{zp, (x1,y1) ... (Tp, Yp)Yp+1---Yp+; € Prefy, ;(Q)} does not depend on
(@1,91) - (Tp—1,Yp—1)Yp - - - Yp+j € Prefp_1;(Q).

Proof. Compare the formulas in Theorems 2.2 and 2.11. We have

H, (a5 V o) < log,, (|Pref,—j;(Q)]),

with equality if and only if every [u] for u € Pref,_; ;(2) has equal measure y, and similar
results for Hf, (o) and HE, (2 5 1V ay). Now, the expression of x in Proposition 2.7 and

uniqueness in Lemma 2.6 give the conditions we stated.

3. GENERALIZATION TO THE HIGHER DIMENSIONAL CASES

We are now trying to compute dimg(P,) in any dimension d > 2. € is now a closed subset
of
Sogomg = (A1 X ... X .Ad)N*,

where my > ... > my > 2 and A; = {0,...,m; — 1}. We define

log(m;)

= log(mi,l)
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and
Li:neN— ’V"Il—‘
Vi
for 2 < i < d (L; being the identity on N). For (z!,...,2%) € Xq we now need to compute

P, (Bn(z!, ..., 2%)), where
Bu(xt,... 2% ={(u', ..., u?) € Sy my, V1 <k <d, V1 <i < (Lgo...oLy)(n), uf =z}
We can again define the Borel probability measures P, on Xq as in the two-dimensional case.

3.1. Computation of dimg(P,) for 3-dimensional sponges. First suppose that d = 3,
as the computation of dimg(P,) in this case helps to better understand the general one. Let
J2, 73 be the unique non-negative integers such that ¢72 < %2 < qj2+1 and ¢3 < i < gt
Now we get two cases : either q]2+]3 <L 'yz’ys < qj2+j3+1 or qj2+j3+1 < 72% < qJ2+J3+2 Suppose
we are in the first one. In that case for all n large enough we have ¢/2n < Lo(n) < ¢/27!n,
¢*n < L3(n) < ¢*n and ¢7273n < L3(La(n)) < ¢72773 %1, In order to compute dimpy (P,,)
we now use the same method as in Proposition 2.2. For n = ¢‘r with ¢ fixed we can write

Ls(La(n ¢ 1Ls3(La(n)) Ls3(La(n

p=1

We now have for all r large enough

o 1<p < gy = | Lellal) Ll ] 11, (), Ly(La(n))
st 1< p < st o = |Rellall) Ll g Ly(Ly(n))]. We have 20 ¢

]Ls(Lz(n)) L3(L2(1n))} and

qP P

i e } L3(L2(n)) La2(n)

; p—js—1; p—J3; p—1; P;
" 7qp_]-3_1} = n<i<g i < La(n) < ¢" 7% < ¢ i < Ly(La(n)) < ¢,

i e } La(n) Ls(L2(n))

} —=n <i < @I < Ly(n) < PN < Pl < Ls(La(n)) < ¢Pi.

qp_j3_17 qp—l
o For js +jo+1 < p < £ we have 20, —no ¢ |Lollal) Lalla(n)] apq
L oo La(L
qP*jZTL*Jg*l g qPEJ(;Lzla thus lf 2 E :| S(qi( )), qp,an,]B,l:I then

qp—jz—js—li <n< qp—jz—jgi < qp_j?’_li < Lg(n) < qp_j3i < qp—li < Lg(LQ(n)) < qpi,

ifie} It Lf((n,)}then

qP—I2—33— 19 gp—y3—1

PITITY < p < P2 < P < Loy(n) < ¢PTR0 < PV < Ls(Lo(n)) < P,

and if i € ] Lz (n) L3(L2(n))} then

qpfj:;fl ’ qr—1
qpszfjszZ- <n< qpszfjsflz- < qpfjsf%- < Lg(n) < qpfjsflz- < qpflz- < L3(L2(n)) < q¢Pi.
Denote by af’,, ozf, and oz]l, the partitions of €2 in cylinders of length p along all three coordinates,

the second and the third ones, and the third one respectively. Using the same approach as in
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the two dimensional case we can get

J3 HE (al) ) J2+is H" ( \/ozl)
. 2 1
imp () = (g~ 12 30 =132 4 (g = g™ —1) 3 ek
p=1 p=j3+1
Jot+Js Hu ( 2 V a )
j Ap—jz—1
+(g= D= d”) > pr
p=j3+1
+ (g = D(qaysg st — 1) i By (09— jo—js V Vjy V )
q — 1){(72734 -
p+1
p=ja-+js+1 1
00 o 2 1
+ (g - 1)(73qj3 _ 7273qj2+j3) Z H, ( Xp—jo—jz—1 V ¥p—jy V ap)
P
p=j2+j3+1 q
00 “w 1
+lg-1)A—y?) > Hy (0 jp—js—1 V % jy—1 V )
p=j2+js+1 P
J2tis+1 Jj2+jz+2 La(n)
= ) 1 = 2
If we suppose now that ¢ < —= 72% <gq we have 77T < o= o=z for n large
enough and we get
J3 HE (al) ‘ Jo+i3+1 Hu ( 2 \/Oél)
. 2 1
dimp(B) = (g 1)° 32 T 4 (g D(osg 1) 5, SRR
p=1 p=j3+1
J2+j3+1 Hp ( V al )
_ _ J3 Ap—jz—1
+ (gD —3¢") > pr
p=j3+1
3 2 1
(@) Ha- Dt -1 Y et VO V)
+1
p=j2+j3+2 @
o] n 3 . 2 1
+ (¢ — 1)(7273qj2+j3+1 _ 'ygqj“) Z i, (O‘p—az—ya—l Vi1V O‘p)
p=jatis+2 7"
00 ”w 1
+ (g — 1)(1 — yoy3¢”2 73+ Z Hp, (o Yp—jo—ja—2 ¥ ap —js—1 V)
P
p=j2+j3+2 q

In the next subsection we will adopt a more general point of view to avoid this case dichotomy.

3.2. Results in any dimension. We get back to the general case, by first introducing
some notations and making a few observations before stating the theorems. Let I C N* and

K C J1,dK be finite sets. If 2 € Q and (z¥) ;7 is a finite set of coordinates of  (the upper
keK
index corresponding to the “geometric” coordinate and the lower one being the digit) we

define the generalized cylinder
{(w?) ie[} ={yeQ yf=afviel, vke K}.
keK

For some arbitrary coordinate functions x1,...,xny € {{z € Q ~ ¥}, k € J1,dK, i > 1} we
also define

Prele,w,XN (Q) = {(Xl(x)v s >XN(5U)) , T € Q}
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For all t € J2,dK, let j; € N such that
. 1 ‘
q]t S _ < q]t+1
Yt
There is a unique sequence of integers (n)2<¢<q such that

Vt € Jl,d — 1K, glatia-itetiitne < 1
TYdYd—1 -+ Vel

< qjd+jd71+-~'+jt+1+nt+1+1.
Let

Pt = Jd+ Ja—1 + ...+ Jir1 + Npp1.
The sequence (n;) takes its values in JO,d — 2K and is non-decreasing; moreover ny = 0 and
ne € {nyy1, 41+ 1} for 2 <t < d—1. The integers j, t € I2,dK and ny, t € J2,d — 1K are the
2d — 3 parameters mentioned in the introduction. Thus we get that for all n large enough,
for s € J1,d — 1K

Lio oL Lio-oLi(n) Lio---olL
VtEJS,d—1K7 vper5+17ps_1K7 t © o 1(n)€ d° ] 1(n) d © ¢} 1(n)

)

gp—pt—1 " -
and
Lgjo---0Ly(n) > Ls q10---0Li(n),
q*
with pg = £ and Lo(n) = 0. If p € J1, pg_1K then
Lyo- q; Ly(n) > Lg_10---0Li(n).

For s € J1,d — 1K let 05 € S(Js,d — 1K) be the unique permutation such that the sequence

Loyyo -+ o Li(n)
qp*pas(t)*l
t€ds,d—1K

is non-decreasing for all n large enough and all p. We define

Is,s—l _ Ld ©---0 Ll(n) LO'S(S) ©---0 Ll(n)
p qP ) qpfpgsg)fl )

ISt — ] Lo,#yo---o Li(n) Lo (t41y0---0 Ll(n)]
o=

qp*pas(t)*l ’ qP*PUs(H-l)*l

for t € Js,d — 2K and

—Po(d—1)—1 )
qp Pogs(d—1)

We will use the partitions

}Ldo"('];Ll(n)vLdo"'OLl(n)] d|;|1
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Lgo...oLi(n) Lgo...oLi(n)
qP ’ qr—1

for all p € Jps + 1, ps_1K. Observe that for i € } such that ¢ 1 i we have

P2 < Lio---o0 Li(n) < qP~Pkg

for all k € J1,d — 1K. Hence for k € J1,d — 1K either

PP 2 < Lpo---o0 Li(n) < gP Pl

or

PP < Lpo---o0Li(n) < ¢? P
Moreover if 7 € I;’t then

Ly, sy0---oLi(n) - - Lo,y 0o Li(n)

<1<
e =05 - - S
qp Pos(s) qp Pos(t)

Ly (t41)0 -0 Li(n) < <Lle@noo Li(n)
qpfpasaﬂrl - = qp*pas(dq)*l ’

For s € J1,d — 1K and t € Js — 1,d — 1K let (pi’t)k@s,d_lK be defined by pZ’t = pp+ 1if
k € o5(Js, 1K), and pi’t = py, otherwise. Thus we have

s,t s,t
1€ I;’t —Vkels,d—1K ¢? P Li<Lpo---0Li(n) < ¢’ P i,

Thus the P,-mass of an arbitrary “quasi-cube” is

P(Bn(z',... a%) :( ﬁ I1 u([x?--w;lp—u}))

p=1 ic Lgo...oLi(n) Lgo...oLi(n)
qP ’ qpfl

qfi

d—1 Ps—1 d—1
®) T I T IT wcgien)
s=2 p=ps+1 t=s5—1 ie[f,’t
qfi

l d—1 .
(I T I Mel@n) - Daeso s,
p=P1+1 t=0 ie[éqi
qfi
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and Dy (x',...,2%) is the residual term. Note that C;f(:v) can also be compactly written as
1
[Ws(x)i ... Ws(m')qppz,tli:l ﬂ ot o5t (x)q”piillj ﬂ ..
d d
ﬂ {7? ($)qp7ps,t T (az)qp_%} ,

d—1;

7TS+1(.I')

using the projections 7% : x> (2¥,..., 2¢) for k € J1,dK.

We define now for all p > 1

. Lgo...oLi(n) Lgo...oLi(n .
B e e ER AR S UV
_ngrolo Ldo--~oL1(n) B qurl ’

58,8—1 _ hm # {Z € 15707 q'fl} _ (qp05(5)+1 Hg:()'s(s)-i-l ’yz - ]_)(q - 1)
D - - ;

n—o0 Ld 0+++0 Ll(n) qp+1

d,d—1
617

#{ie 3, qti}
0%t = lim
p n—o00 Ldo“'OLl(n)

pgs(tJrl) df . — pas(t) df ; - 1
= (g HZ*US(tH)H i z HliUS(t)H LUCi) for t € Js,d — 2K
q

and

it LSRN ati} Qg I )
P ~ mooo Lgo---oLi(n) qP ’

Moreover denote by o/; the partition of 2 into cylinders of length p along the last k£ coordinates
for k € J1,dK. Finally let

d—1
H, = > o'HE (apva® oovad . v.ovaed s
P . L P d i4 2y P—Dy o p—py
—5—

for s € J1, dK.

Theorem 3.1. The Borel probability measure P, is exact dimensional and its dimension is
jd _ d—1 Ps—1 _ oo -
S, p) = ZHC/ZP + Z Z Hey | + Z Hﬁp'
p=1 s=2 p=ps+1 p=p1+1

Proof. We use exactly the same method as in the proof of Theorem 2.2, using the computation

of P, (By(zt,...,x%)) above, the different families of i.i.d random variables

(Voo € Xa = —log(u(C}i ()}

ey’
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whose expectations are HF, y (a}, \% ai_ st V ol st .V ai ;j}) respectively, and Theo-

Py p—p
rem 2.1 and Lemma A.2 repeatedly. We “cihtlen show dagzam that the residual term D, (2", ..., 29),
which is larger than or equal to the IP,-mass of those points in X which share the same sym-
bolic coordinates as x for those indices j which do not appear in the cylinders of the forme
C’;f(fn) with p < ¢, is IP,-almost always negligible. To do that, we use like in the proof of
Theorem 2.2 Borel-Cantelli lemma and the set

S, ={(z',...,2%) € Xq, Do(z',...,2%) < 2mimy...mg) "%},

where the exponent

}Ldo...oLl(n) Ldo-..oLl(n)}’ qui}p

dn:Ldo OLl Z#{zENﬂ qp ) qp,l

p=1

can likewise easily be controlled.

We can again optimize this quantity following the method we used in the two-dimensional
case, by conditioning all the entropy terms appearing in the third part of this expression for
p > p1 + 2 by the finest partition appearing in the term H {‘ pi+1- We know that for all s we
have

t N
tSt/:>Vk7 pz Spi )

(6)

7t ’t/
t<t' =3k, pi" <p",
so this partition is the one appearing in the t = 0 term, i.e.

Oé:Oél

L Vol val e V...val

p1+1-p7°, X1 —Py g p1+1-p; 0"
_ 1
=11V ap1+1—pd—1 v ap1+1—pd—2 V...Vor.
If C is a cylinder of this partition in €2, denote by ¢, 8¢ and uc the associate rooted set at

C € « in ), its p-mass and the normalized measure induced on it by p respectively. We get
that

Jd — Ps—1
Q) = Z HY + Z Soomy,
p=1 s=2 p=ps+1
d
(7) Z 1+1 < 41V O‘p +1-pyt, ViV apl+1p}’t>

= 1
S+ 2 Z S0 | HE, () + = > 00S(Qc, ne),

p=p1+2 t=0 ceC
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since for p > p; + 2 and t € JO,d — 1K we can write
m 1 2 3 d
Hy, . (ap \Y% Qppit \Y% Qo it V...V ap—p}’t>

_ITK ”w 1 2 3 d
= Hf, (o) + HE, (ap Va e Vab e VeV O‘pp}’t‘a)

d—1 PPy o

= H#md(a) + Z QC’H#@g (a;—l \ 042 1,t V 043

d
1.t .V« 1.t (Qc))
p—py ,—1 P—py ,—1 p—p; —1
CEC d—1 d—2 1

Now we can obtain the unique optimal measure as in the proof of Theorem 2.7 by getting
the go with a recursive reasoning and repeating the argument for the entire suitable graphs.
To make things clearer and to highlight the fact that the structure of the optimal measure
is similar to the one appearing in the two-dimensional case, we introduce now the unique
sequence of coordinate functions (;)i>1 such that if we reorder the partitions of {2 appearing
in the expression of dimg (IP’M) above as an increasing sequence ;1 < 2 < ... (the symbol <
corresponding there to the “finer than” partial order) we have

HH(B) = */ﬂlogmd (b (D) - - xi(@)]) dp(z)

for all 4 > 1. Here we used a slight generalization of the notion of cylinders we defined at the
beginning of Section 3.2, allowing ourselves to use any family A C N* x J1, dK of coordinates
of x and not necessarily a product. This order is exactly the following (using again facts (6)):
2

O‘% << alle—l < ai}ld—1+1 N aid71+1,p3:}»d*1 < O‘;Llod_l—i—l \ apd71+1*p§:i’d72 <

he a2 g SV e S SV
0411,(#2 Cl’id72 Zfi,dfz <... < a;QJrl V a12)2+1*173’,d171 V...V a;lg_—il—pg“Fl <... <

Y a1202+17p3‘_11 V...V az;il—pgvl <. <ap V ail—piflfl V...V azl__l s <. <

ap V airpi‘_ll Ve aif—lpé*l < 0V afnﬂ—piff VeV O‘z1+1—p}'d*1 S

ap gV a12o1+1fpfi’fl V...V O‘zﬁlfp}’o =a<a, oV afnﬁwéffl V...V az1+2—p}d*1 <... <
0411)1+2 V 0412?1_'_2_]);,81 V...V Oélc?ll-i‘?—p}’o <...

For example, when d = 3 and dimpg (IP,) is given by (4), this sequence is given by

3 3 .3 2,3 2 3 1.2
(X'L)'Lzl = (ml, P ,$j3,$j3+1,$1,$j3+2,:(}2, ceey xj2+j3+2, x17$j2+27 .. ) .
We also denote by (6;);c31,n¢ the sequence of real factors giving weights to the IV entropies in
S(Q, ) (see (7)) when being reordered that way. Let

d—1

N=pi+1+> (p+1-pp)
k=1

be the number of coordinates x; appearing in the partition « distinguished above. Finally for

(X1,..., Xn) € Prefy, () let T'x, . x,)(€2) be the directed graph whose set of vertices
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is (X1,..., XN)UUEZ Prefy, vy, (), and where for all £ > 0 there is a directed edge from
u=X1... XN to an other one v if and only if v = X1 ... XN g XNt0a+1 - - - Xnp(e41)q for
some X;, i € JN +4d+ 1, N + (£ + 1)dK.

N
04
Theorem 3.2. Let w; = Zfil 0;y WL = z%:\;—ké for 2 <k < N and wyy1 = ﬁ. For all
i=k—1 %%

Q
1,...,XnN) € Pre ere is a unique vector ¢ € such tha
(X1....,Xx) € Pref, () th que vector ¢ € [1,me¥+) 00 suen that
forall £>0and (Xi,..., Xniw) € T(x,,. . xy)(€2) we have

| wN WN—d+3\ ON—d+2
ON_—d+19N+1 — E E E
(txl___XN+m]) N—d+1 +1 ( ( < txl"'xrlxl+(|ip1)d) > ) ,

’ ’ !’
XNtrar:  XNtmae XN+(FFIl)d

where Oy _g+1 = wiwa . ..wN—q4+1. Moreover if we define

oS (E((E (Sre) ) ) )

Xi X Xy

the unique Borel probability measure maximizing S(£2, i) is defined for all ¢ > 0 by

(8)
1% ([Xl .. -XN+|EJ])

ty
p=2 2] p+1 r/\|71

1 1 d WN WN—d+p+1\ ON—d+p—1
t t TonC d+1®N+1 t ,
X1 XNtkd "X XN (k—1)d s X1 X s kd s
X /

k=1 p=2 l/\l+(k—1)d+p XNk

and its Hausdor [_dimension is equal to w; log,,, ,(t).

Proof. The existence and uniqueness of ¢ are checked using a fixed point theorem as in Lemma
2.6. We get with these notations that

N

1

) =>_GHE (B)+= Y Ox.xyS( QX1 Xus BX1Xn)
i=1 95, Xy

0
= (A, 00 2 Y0 (- 30 G b, (2
0x, x, < 0x, X5 X3 <9X1X2X3>
+ w3 log —_—
Z Z . O o

+w4ZHX1X2X3<...+wN 5 X1 Xn 1 ( Zeexl X 1o d(exl...xN>
3 N-1 v -

XN 1 GXI---anl
tw X XN G Qe i
NHXZGXl o (Qx. X X1 Xy )
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Optimizing this expression as before, we get that 0x,  x, equals

S H (z( S (2 (z)))))

p Xpp Xyvo1 Xy
wn1S(Qx; . xy ) 25
where zx, .. x, = my * 2N and zg = mdw1 . It remains to optimize the conditional
measures on the subtrees Qx, . x,, by maximizing the expression S (2x,.. . xy, #x,..x,) Which
is equal to
‘qu XN . 1 0X1"‘XN+d
Z 5 (62 (QXlxN)) + - Z 0 S QXl...XN+d7 /’LXl...XN+d
—d+1 XN4+15-XNtd X XN
o~ 6X1 VX1 XNy1 log QXI--‘XNJ,-l
“ovan(- £ G L
7 Oxxy O0x,.. Xy
9X X
1. XN+1
foncan Y 9(
XN+1 X1 XN
9X1 XNtd-1 0X1---XN+d 1 0X1---XN+d
boy ¥ g (g M (Bt
XNtd1 X1...XNyd—2 Xntd X1..XNya—1 X1 XN1d-1
0x,..x
1 N+d
+ WN+1 Z 075 (QXI XN+d7:u‘X1---XN+d)) ))
XN+td XN a1

and repeating the argument for the entire graphs. This yields the desired results.

Theorem 3.3. Let ;. be the Borel probability measure on ) defined in the last theorem, and
let P, be the corresponding probability measure on Xgq. Let z € Xq. Then

-1 P.(By,
o, (Bu(Ba(a)
n—00 Lgjo---0Li(n)

Using Theorem 2.1 we deduce that

<wilog,,, (tz).

) —1
dimp (Xo) = wi log,,, (t) = qT log,, (t)-

d
Proof. Let A(n) = U {L’“O+fl("), re N}. We can reorder the elements of A(n) as the
k=1

following increasing sequence :
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Ldo---oLl(n)> >Ldo-~-oL1(n)

Ldo---oLl(n)Z ZLd—lo"'oLl(n)Z

. >...> oy
Ldo-~~oL1(n)>Ld_1o---oL1(n)>”' Ly qo0- oLl()>Ldo---oL1(n)>
gpa—1+1 = q = = qPd—2—Pa—1—1 = qPd—2 -

Ly, ya-1y©-- o Li(n) o Lou a2 o---0Li(n) o Lao---oLi(n)

qu—z—pad_Q(dq) qu—z—pod_Q(dfg) - qu72+1 ==
Loy san©---0Li(n) Loy s o---oli(n) _ Lgo---oli(n)
qu73*pgd72(d71)*1 = qu737p0d72(d72)71 = qPd—3 - =
Lgo---oli(n) _ Loy@-no---ola(n) — _ Leymo--—-oli(n)  Lgo---oLi(n)
gPt = qplfpgl(dﬂ) == qplfpal(l) - qp1+1 -
Lo (@-1y0---oLi(n) > < Le o---0Lyi(n) _ Lao-oLi(n)
P1—Poq (d—1)F1 == P1—Poq (1)1 = p1-+2 =
q ! q L q
We denote by
¢o(n) = Lgo---oLi(n) = ¢1(n) > ¢a(n) >
this sequence, which is valid for all n. Observe that ¢y (n) = %ﬁ() We now fix n > 1.

Let S > 0 be the unique integer such that we have

ps(n) <1< ds-1(n) <...< ¢p(n).

We can write S = N + Md + R, with M > 0 and R € J0,d — 1K. Recall formula (5). With
these notations we get that

S
(9) P (Bn(z)) = [] 11 (X (zly) - X (2))]) -
k=1 ¢k(n)<iq§i¢k—l(n)

Now we have forall 1 <k < N —1

(D (el) - oxn (212)])

1 k wWN wp—1
10 - % H ( Z o < Z /tX1(x|Ji)---Xp1(50|JZ~)Xp(x|.fi),---XN($|Ji)/> )
(10) p=2 xp(2l7;) xw (]
WN Wht1
( > %(wm)...m(zJi>xk+1<x|1i>'...xN(x|Ji)'> ) :
Xk+1(xl;)! xn ()’
If R =0 then
n(xa (@ls) - XN+ma (2]5,)])
M __ 1
o ON_—d+1¥N+1
= U ([Xl (:L'|Jz) . :L“J 71;[1 tXl ‘] XN+rd( ‘] ) tXl (l"J,L-)~~~XN+(r_1)d(-T|J,L-)
d wN WN—dip+1\ WN—dtp—1
1:[ < Z ) < ( Z ¢ 1(in)~~~XN+rd($Ji)/) > > ]
P=2 "X n+tr—nyasp(2ls;) xv+ra(zls,)
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and if R € J1,d — 1K then
(11)

w([xa (@l3;) - - xN+Mma+Rr (2]3;)])

M _ 1
— ON —d+1®N+1
- ([Xl (xhi) . x“] 1_[1 tXl XlJ XN+rd(XIJi) tx1 (X|3i>"'XN+(r—1)d(X|Ji)

r=
d 0N WN—d+p+1\ ON-d+p—1
I = ( (T ttmntny) ) ) ]
p=2 XN+(r—1)d+p(X|Ji)/ XN +rd XlJ.

Rl (CINERTRTAINTED
X (X197) - Xn-+ma (X3 )

. ﬁ ( Z ( ( Z tXl(lei).._XN+(M+1)d(XIJi)/)(DN ...>de+p+1>de+p—1

P=2 “Xnimatp(Xla;)’ XN vt (Xlap)
N WN —d+R+1
Z e < 2 : tXl(XlJi)---XN+(M+1)d(X|Ji)/> c ) .
XN+Md+Rr+1(X]3;) XN+ M +1)d(Xl3;)’

Observe now that for k& € J0,dK and r € N we have ¢n_girqa(n) = @V;if(n). Thus for
ke€lJ0,d—1Kand r € N

(12) ON—ktrd(n) <1 < ON—ktrd—1(n) == On-k(n) < "I < dN_k—1(n).

Now we can develop the expression (9) of P,(By(x)) and group together the terms with the
same number of sums. We get ;' for all 1 < i < ¢o(n) such that g { i; using property (12)

we get
M
II T taewowiaen = I tae)oals)s
r=0 1<i<¢N4ra—1(n) r=q"i<pNn_1(n)
qti qfi
and
M
H H t*(®N7d+1wN+1)_1 _ H t*(‘:’N—dlewN-H)_l .
x1(x|s,) XNtra(zls) x1(zlg;)--XN+ra(zls,)’
r=0 1<i<én4ra(n) k=q"i<$n (n)
qfi qti

we gather the product of terms coming from (10) with k£ € J1, N — dK to get

N—d WN Wk+1
II II ( >, - ( ) txl(x|Ji)...Xk(x|Ji)xk+1(a:Ji)'...mxwi)/) > )
k=1 ¢p(n)<i<dr—1(n) ~xr+1(zls;) xn ()
N wN WN—p+2
H H < Z < Z tX1($|Ji)---XN($|Ji)I> ) )
p=d+1 ¢n_p11(N)<i<ON_p(n) ~XN-p+2(zls;)’ xn (zl5,)

qfi
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and similarly

N—1 WN Wk+1
H H ( Z T ( Z tXl(XlJi)---Xk(XL]i)Xk+1(X|Ji)/...XN (XIJI)/) ce )

k=N—d+1 gk (N)<i=@r_1(N) * Xk+1(xl3;)’ Xn (X13;)

:ﬁ II ( > ( > txl(xlgi)...xN(xbi)')wN-~-)wNp+27

P=2 @n_pt1(M=<I=On_p(N)  *Xn-pt2(X]3;)’ XN (X3;)’
afi
that we combine with
M d—1 wWN WN —-d+R+1
OO0 T (o X o) )
k=0 R=1 ¢Nn+kd+R(n) <i<PNtkd+R-1(1n) ~ XNtkd+R+1(2|3;)’ XN+ (k+1)d (2]35)’

q-1i

M+1 d ~ o
= H H H < Z < Z tXl(zJi)>.<XN+rd(‘T_]i)l) ) ,

r=1 p=2 ¢Ntrd—p+1(n)<i<PNtra—p(n) XN+rd—pt2(z]3;)’ XN+rd(z]3;)’
q-i

to get
d

oN WON—p+2
H H ( Z ( Z txl(XIJi)---XN+rd(XIJi)’> ) :

p=2 <PN—p+1(n)<K=_qriS<PN—p(n) XN +rd—p+2(X]3;)’ XN+rd(X]3;)’

afi
finally we combine in a similar way all the remaining terms from the products (11) and (10)
and obtain
d wN WN_pt2—1
H H ( Z e ( Z tx1(x|Ji)---XN+rd(x|Ji)') - )
p=2 K=q’“i§¢>?{—p+1(n) XN+rd—pt2(@|s;)! XN +rd(z]s;)
qe
N WN WN_pt2—1
I 1II ( > ( > %(mi)...w(m)/) : ) :
p=d+1l i<¢n_pir1(n) " xwv-pra2(zls;) xn(zl7,)
qti
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Thus

Pu(Bn(z))
_ —#{i Lo (n)K, gfi} —(@nN—dr10ON+1) !
=iy ’ ( H txl(XlJl)...XN+rd(X|J|)) ( H txl(xlTJit;t.lx:r.—ld(XlJi))
k=q"i=@n_1(n) k=q"i=on (n)
qfi qfi

d wWN wN7p+2_1
11 II ( > ( > txl(x|Ji)...xN+rd(x|Ji)/) )

p=2 K:qristp,{\!_p_,_l(n) XN +rd—p+2(X]3;)’ XN+rd(X]3;)’

ati

d WN WN —p+2
10 1 ( ) ( 3 txl(X|Ji)___XN+rd(X|Ji)/> )
p=2 (pN,p+1(n)<K?qrisq>N,p(n) XN +rd—p+2(X]3;)’ XN+ra(X]3;)’

ati
WN (*)pr+2_1
H I (o semmeny) )
=d+1 i=en-p+1(N) “XN-p+2(X|3;)’ XN (X]35)
afi

N wN WN —p+2
I1 II < > ( > txl(xhi)...xN(xhi)') )

p=d+1 @n-_p+1(M<i=En_p(N) *XN-p+2(X|3;)’ Xn (X13;)’

afi

For k = ¢"i with ¢ 14 let
Ri(k) = logmd (tX1(x\Ji)‘..XN+Td(x\Ji)) )

Ry (k) = IOgmd ( Z tXl(x|Ji)---XN+rd(x|Ji)/>’

XN+rd(z]g;)

and for p € J3, dK

wN WN—p+3
Ry (k) = log,,, ( Z ( ( Z tXl(l'Ji)"'XN+rd(73Ji)/) > >

XN+rd—p+2(z],) XN+rd(z]1,)

ForpeJl,dkand n > 1 let
1 n
= n Z Ry(k)
k=1

and for p € Jd + 1, NK let

wN WN—p+3
Z logmd < Z ( ( Z tX1($|Ji)---XN($Ji)/) ) >

" i<n, qti XN -p+2(®]s;) xn ()

This gives us IV bounded sequences. We can now write

—log,,,,(Pu(Bn(x))) = (ON—ar1wnt1) ™! WN(")JU@N(n)J - L¢N—1(”)JU1¢N,1(n)J

+ Z ( | Pr+1(n ng;fl(n)J — Wht2| P (n )Ju Lew( n)J)

+ #{z € J1, ¢po(n)K} log,, , (tz).
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Furthermore some basic computations give us the values of the exponents

d—1 Ps—1 — o0

Zadd LYY Y gy Y=l
s=2 p=ps+1t=s—1 p=p1+1 t=0
oy — —0 1 3:w1—51—52:1
w1 q’ wi — 01 q’
1 Pd—1
W4 =...=Wpy 1+2 = 5) Wpy_1+3 = Yd4q ’
k—1
1 - >0
Wpy_144 = ————7 Wi =1
Pd—1 - _+10 ) - k—2
YagPi!
— > 0
i=1
d Yi P1—Poq (1)
wn = gPor()Poy(p =ML q .
N q d ) N+1 d
Hi:al(2)+1 Vi (¢—1) Hgl(1)+1 Vi
This yields
d
(ON—gsriwn+1) "t =gPn0T I
i=01(1)+1

and then
lon—1(n)] ~ (@Nn—gr1wn+1) " on(n)],

| Prr1(n)] ~ wry2|Pr(n)]

for all £ € JO, N — 2K, when n — +00. We conclude by using again lemma A.3.

Theorem 3.4. For ny,...,ng € N let

d
Pref,, . n,(Q) = {u € H(JO,mi — 1K x -+ x J0,mq — 1K), QN [u] # @} .

=1

We have
Jd
dlmM(XQ) = Z 5g’d*1]Pref07._,,07p(Q)\
p=1

— Ps—1

55 ot Pref, ; ; e (€
+ Z Z Z | 0,..,0,p—p3" P2 —pS oyt 0t L0t ()]
s=2 p=ps+1 t=s—1

00 -1
-+ Z Zél’t\Pref 1t 1t 1t 1, 1t 1.t (Q)|
p pP—pPy Py 7p2 I8 ’pd 2 pd 1’pd 1
p=p1+1 t=0

Proof. The proof following the same path as in the two-dimensional case, we leave it to the

reader, along with the characterization of the equality case with the Hausdorff dimension.
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APPENDIX A.

Lemma A.1. Let py,...,pm > 0 with >0, py =1, and let qq,...,q, € R. Then

> pi(—log(ps) + ¢;) < log (Z 6q"> ;
i=1 i=1
with equality if and only if p; = Zn%qi —a; for all 1.

Jj=1

Proof. See [3, Corollary 1.5].

Lemma A.2. Let (Q,F,P) be a probability space, (m,) € (N*)¥" be a strictly increasing
sequence such that >>° ; # < +oc and for all n > 1 let (X;,)ici1,m,« be a family of inde-
pendent centered random variables on (2, 7, P). Assume that there exists K > 0 such that

Vn € N*, Vi € J1,mnK, E [Xf;n} < K.
Then ;-3 Xij —— 0.
Proof. Fix n > 1. We have

Mn 4 mMn
(Z Xn> ] =F {Z Xi,+6> Xﬁnxﬁn]
=1 =1

1<j

E

<mpK + 3mn(mn - 1>K

< 3Km?

4
by using independence and Jensen’s inequality. Now > >° (%n oo Xi,n) is a well-defined
randon variable that takes its values in Rt U {+00}. Moreover by the monotone convergence

theorem

E

4
) 1 Mp o0 1
2 <mn?2Xi’”) ] e

n=1 n=1

4
Mp ) 1
<2Xn> ] <SBK )Y —5 < +oo.

n=1"""T

4
o0 1 Mn . 1 M, ) a.s
Thus Y 724 (mn Do Xl,n> < +ooasand ;- 3" Xin = 0.

Lemma A.3. Let p € N* and for 1 < j < p let (u)) € RN be p bounded sequences with

; I 0 =
A e = = 0

For j € J1,pK let ¢;,v; : N — N such that
Jej,r; >0, 3A;, Bj € N, Vn, |¢;(n) — [rn]| < Aj; and |¢j(n) — [¢;n]| < B.



Then we have »
.. j L
lim inf 2; (e ) = ) <O
j:

Proof. Observe that for all j and n we have [rjn] € {¢;(n) +k, |k| < A;} and [¢jn] €
{;(n) +k, |k| < B;}. Thus

J . J J . J
55y~ T | S X Nty — gyl 52, 0
using the hypothesis on v/ above. Similarly ]uibj (n) ~ u]('cﬂﬂ 2 0. Now conclude with [6,

Lemma 5.4] or [8, Lemma 4.1].

Lemma A.4. Let 1 be a Borel probability measure on X,,, ,,,. Suppose that ;. is exact
dimensional with respect to the metric

J((xk’yk)zozh (up, vp)3,) = e~ min{k>1, (xk’yk)7é(ukﬂ}k)}7

with dimension 6. Denote by do the lower Hausdor [_dimension of m,u with respect to the
metric induced by d, and let é; and &1 be the essential infimum and the essential supremum
of the lower Hausdor [_dimensions of the conditional measures 1, with respect to d again,
where p,, is obtained from the disintegration of x with respect to m.... Then, with respect to
the metric d, for u-almost every point z we have

1 o . S 5 ( 1 1 )
+ < dim ,2) < dim ,2) < — 01.
Tog(ma) T Tog(mg) < Weelit2) < dimioo(i 2) < 500y = oy 7)o

(m2)  log(my
So, if &1 = 6, and § = 61 + &2 then p is exact dimensional with respect to d.

Proof. The first inequality follows from the proof from a result of Marstrand (see [2, Theorem
5.8]), while the second one can be deduced from the proof of [5, Theorem 2.11].
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