Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE ACTION OF MULTIPLICATIVE INTEGERS

Abstract : Let $m_1 \geq m_2 \geq 2$ be integers. We consider subsets of the product symbolic sequence space $(\{0,\cdots,m_1-1\} \times \{0,\cdots,m_2-1\})^{\mathbb{N}^*}$ that are invariant under the action of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres and Solomyak and using a fixed integer $q \geq 2$. We compute the Hausdorff and Minkowski dimensions of the projection of these sets onto an affine grid of the unit square. The proof of our Hausdorff dimension formula proceeds via a variational principle over some class of Borel probability measures on the studied sets. This extends well-known results on self-affine Sierpinski carpets. However, the combinatoric arguments we use in our proofs are more elaborate than in the self-similar case and involve a new parameter, namely $j = \left\lfloor \log_q \left( \frac{\log(m_1)}{\log(m_2)} \right) \right\rfloor$. We then generalize our results to the same subsets defined in dimension $d \geq 2$. There, the situation is even more delicate and our formulas involve a collection of $2d-3$ parameters.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-univ-paris13.archives-ouvertes.fr/hal-02958411
Contributeur : Guilhem Brunet <>
Soumis le : mardi 6 octobre 2020 - 14:40:30
Dernière modification le : mardi 20 octobre 2020 - 15:56:28

Fichiers

brunet.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02958411, version 1
  • ARXIV : 2010.03230

Citation

Guilhem Brunet. DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE ACTION OF MULTIPLICATIVE INTEGERS. 2020. ⟨hal-02958411⟩

Partager

Métriques

Consultations de la notice

7

Téléchargements de fichiers

13