L. Almeida, M. Duprez, Y. Privat, and N. Vauchelet, Control strategies on mosquitos population for the fight against arboviruses, Math. Biosci. Eng, vol.16, issue.6, pp.6274-6297, 2019.

L. Almeida, J. Estrada, and N. Vauchelet, Wave blocking in a mosquito population model with introduced sterile males

L. Alphey, M. Q. Benedict, R. Bellini, G. G. Clark, D. Dame et al., Sterileinsect methods for control of mosquito-borne diseases: an analysis, Vector Borne Zoonotic Dis, vol.10, pp.295-311, 2010.

R. Anguelov, Y. Dumont, and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl, vol.64, pp.374-389, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00732800

D. G. Aronson and H. F. Weinberger, Nonlinear Diffusion In Population Genetics, Combustion, And Nerve Pulse Propagation, vol.446, 1975.

H. Berestycki, N. Rodríguez, and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul, vol.11, issue.4, pp.1097-1126, 2013.

P. Bliman, D. Cardona-salgado, Y. Dumont, and O. Vasilieva, Implementation of Control Strategies for Sterile Insect Techniques
URL : https://hal.archives-ouvertes.fr/hal-01943683

G. Chapuisat and R. Joly, Asymptotic profiles for a traveling front solution of a biological equation, Math. Mod. Methods Appl. Sci, vol.21, pp.2155-2177, 2011.

V. A. Dyck, J. Hendrichs, and A. S. Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, 2005.

S. Eberle, Front blocking versus propagation in the presence of a drift term in the direction of propagation

G. Fu, Female-specific flightless phenotype for mosquito control, Proc. Natl. Acad. Sci, vol.107, pp.4550-4554, 2010.

F. Gould, Y. Huang, M. Legros, and A. L. Lloyd, A Killer Rescue system for self-limiting gene drive of anti-pathogen constructs, Proc. R. Soc. B, vol.275, pp.2823-2829, 2008.

J. Heinrich and M. Scott, A repressible female-specific lethal genetic system for making trans-genic insect strains suitable for a sterile-release program, Proc. Natl. Acad. Sci. USA, pp.8229-8232, 2000.

A. A. Hoffmann, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature Aug, vol.24, issue.7361, pp.454-461, 2011.

T. J. Lewis and J. P. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math, vol.61, pp.293-316, 2000.

M. A. Lewis and P. Van-den-driessche, Waves of extinction from sterile insect release, Math Biosci, vol.116, issue.2, pp.221-268, 1993.

J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, Journal of Biological Dynamics, vol.9, pp.1-14, 2015.

J. M. Marshall, G. W. Pittman, A. B. Buchman, and B. A. Hay, Semele: a killer-male, rescuefemale system for suppression and replacement of insect disease vector populations, Genetics, vol.187, issue.2, pp.535-51, 2011.

G. Nadin, M. Strugarek, and N. Vauchelet, Hindrances to bistable front propagation: application to Wolbachia invasion, J. Math. Biol, vol.76, pp.1489-1533, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01442291

T. P. Evans and S. R. Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti, Mathematical Biosciences, vol.254, pp.6-27, 2014.

J. Pauwelussen, One way traffic of pulses in a neuron, J. Math. Biol, vol.15, pp.151-171, 1982.

B. Perthame, Parabolic equations in biology, Lecture Notes on Mathematical Modelling in the Life Sciences, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01423552

M. A. Robert, K. Okamoto, F. Gould, and A. L. Lloyd, A reduce and replace strategy forsuppressing vector-borne diseases: insights from a deterministic model, PLoS ONE, vol.8, p.73233, 2012.

S. Lee, R. E. Baker, E. A. Gaffney, and S. M. White, Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks, Journal of Theoretical Biology, vol.331, pp.78-90, 2013.

S. Lee, R. E. Baker, E. A. Gaffney, and S. M. White, Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques, Theor. Ecol, vol.6, pp.427-442, 2013.

B. Stoll, H. Bossin, H. Petit, J. Marie, and M. , Cheong Sang, Suppression of an isolated popu-lation of the mosquito vector Aedes polynesiensis on the atoll of Tetiaroa, French Polynesia, by sustained release of Wolbachia-incompatible male mosquitoes, Conference: ICE -XXV International Congress of Entomology

M. Strugarek, H. Bossin, and Y. Dumont, On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations, Applied Mathematical Modelling, vol.68, pp.443-470, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01799954

D. D. Thomas, C. A. Donnelly, R. J. Wood, and L. S. Alphey, Insect population control using adominant, repressible, lethal genetic system, Science, vol.287, issue.5462, pp.2474-2476, 2000.

C. M. Ward, J. T. Su, Y. Huang, A. L. Lloyd, F. Gould et al., Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis, Evolution, 2011.

. Apr, , vol.65, pp.1149-62

X. Zheng, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, vol.572, issue.7767, pp.56-61, 2019.