. .. Hypercube, 19 6 Function OrthTessFaces : computes the conforming tessellations with p-order orthotopes of all the m-faces of the d-orthotope ra 1 , b 1 s?¨¨¨?ra d , b d s, Function CGbeta : Computes ? l , @l P v1, dw, defined in (10) . . 11 2 Function CGTessHyp : computes the nodes array q q q and the connectivity array me me me obtained from a tesselation of the p-order cartesian grid Q p,N N N with unit p-order

, Kuhn's triangulation of the unit d-hypercube r0, 1s d with d! simplices (positive orientation)

. .. , 28 10 Function CGTessSim : computes the tessellation of the cartesian grid Q p,N N N with p-order simplices, 11 Function CGTessSimFaces : computes all m-faces tessellations of the cartesian grid Q N N N with p-order m-simplices, vol.30, p.33

. .. , 7 4 Number of m-faces of a nondegenerate d-simplex

, 35 7 Tessellation of r´1, 1s 3 with orthotopes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. . . . . 35 8 Tessellation of r´1, 1s 4 with n me orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0, Tessellation of r´1, 1s 2 with n me orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0

, 36 11 Tessellation of r´1, 1s 3 with n me 2-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0, 10 Tessellation of r´1, 1s 2 with n me 2-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0, p.37

. .. , 38 16 Tessellation of r´1, 1s 4 with n me 3-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0, Tessellation of r´1, 1s 5 with n me 2-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0, vol.37, p.14

R. M. Beekman, An Introduction to Number Theoretic Combinatorics, 2017.

J. Bey, Simplicial grid refinement: on freudenthal's algorithm and the optimal number of congruence classes, Numerische Mathematik, vol.85, issue.1, pp.1-29, 2000.

H. S. Coxeter, Regular Polytopes. Dover books on advanced mathematics, 1973.

F. Cuvelier, fc_hypermesh: a object-oriented Octave package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes

F. Cuvelier, fc_hypermesh: a object-oriented Matlab toolbox to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes

F. Cuvelier, fc_hypermesh: a object-oriented Python package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes

F. Cuvelier and G. Scarella, Vectorized algorithms for regular tessellations of d-orthotopes and their faces, 2016.

F. Cuvelier and G. Scarella, Vectorized algorithms for regular tessellations of d-orthotopes and their faces. HAL archives ouvertes, 2017.

, Python Software Foundation. Pypi, the python package index, 2003.

H. W. Kuhn, Some combinatorial lemmas in topology, IBM Journal of Research and Development, vol.4, pp.518-524, 1960.

K. Weiss, Diamond-Based Models for Scientific Visualization, 2011.