S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. Deleo et al.,

N. M. Jena, R. Johnson, S. J. Kirchheim, M. J. Pearton, and . Stavola, Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys, vol.64, pp.559-617, 1992.

M. S. Daw and M. I. Baskes, Quantum Mechanical Calculation of H Embrittlement in Metals, Phys. Rev. Lett, vol.50, pp.1285-1288, 1983.

W. Zhong, Y. Cai, and D. Tomanek, Computer simulation of H embrittlement in metals, Nature, vol.362, pp.435-437, 1993.

L. Zhong, R. Wu, A. J. Freeman, and G. B. Olson, Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron, Phys. Rev. B, vol.62, pp.13938-13941, 2000.

H. Vehoff and P. Neumann, Crack propagation and cleavage initiation in Fe-2.6%-Si single crystals under controlled plastic crack tip opening rate in various gaseous environments, Acta Metall, vol.28, pp.265-272, 1980.

M. B. Djukic, G. M. Bakic, V. Zeravcic, A. Sedmak, and B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech, vol.21, p.106528, 2019.

J. R. Rice and J. Wang, Embrittlement of Interfaces by Solute Segregation, Mater. Sci. Eng. A, vol.107, pp.23-40, 1989.

O. Barrera, D. Bombac, Y. Chen, T. D. Daff, E. Galindo-nava et al.,

J. R. Katzarov, C. Kermode, M. Liverani, F. Stopher, and . Sweeney, Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum, J. Mater. Sci, vol.53, pp.6251-6290, 2018.

S. Serebrinsky, E. A. Carter, and M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, J. Mech. Phys. Solids, vol.52, pp.2403-2430, 2004.

X. J. Shen, D. Tanguy, and D. Connétable, Atomistic modelling of hydrogen segregation to the ?9
URL : https://hal.archives-ouvertes.fr/hal-01170578

, Philos. Mag, vol.94, pp.2247-2261, 2014.

M. Yuasa, T. Amemiya, and M. Mabuchi, Enhanced grain boundary embrittlement of an Fe grain boundary segregated by hydrogen (H), J. Mater. Res, vol.27, pp.1589-1597, 2012.

H. Momida, Y. Asari, Y. Nakamura, Y. Tateyama, and T. Ohno, Hydrogen-enhanced vacancy embrittlement of grain boundaries in iron, Phys. Rev. B, vol.88, issue.13pp, p.144107, 2013.

M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo et al., First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems, Metall. Mater. Trans. A, vol.42, pp.330-339, 2011.

A. Van-der-ven and G. Ceder, The thermodynamics of decohesion, Acta Mater, vol.52, pp.1223-1235, 2004.

G. A. Young and J. R. Scully, The diffusion and trapping of hydrogen in high purity aluminum, Acta Mater, vol.46, pp.6337-6349, 1998.

F. Apostol and Y. Mishin, Hydrogen effect on shearing and cleavage of Al: A first-principles study, Phys. Rev. B, vol.84, pp.104103-104108, 2011.

J. R. Rice, Bernstein, publication of The Metallurgical Society of AIME, Effect of Hydrogen on Behavior of Materials, pp.455-468, 1976.

J. P. Hirth and J. R. Rice, On the Thermodynamics of Adsorption at Interfaces as it Influences Decohesion, Metall. Trans. A, vol.11, pp.1501-1511, 1980.

, The room temperature H diffusivity in bulk fcc Al is approximately 10 -11 m 2 /s according to the most detailed analyses. Practical simulations in this work however involved the slow fracture limit, with the impurity hence automatically being treated as 'highly mobile

I. H. Katzarov and A. T. Paxton, Analysis of hydrogen-enhanced decohesion across (111) planes in ?-Fe, Phys. Rev. Mater, vol.1, issue.10pp, p.33603, 2017.

Y. Mishin, P. Sofronis, and J. L. Bassani, Thermodynamic and kinetic aspects of interfacial decohesion, Acta Mater, vol.50, pp.3609-3622, 2002.

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc. A, vol.221, pp.163-198, 1920.

G. R. Irwin, Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, J. Appl. Mech, vol.24, pp.361-364, 1957.

M. Yamaguchi, M. Shiga, and H. Kaburaki, Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System, Science, vol.307, pp.393-397, 2005.

P. Hohenberg and W. Kohn, Phys. Rev, vol.136, pp.864-871, 1964.

W. Kohn and L. J. Sham, Phys. Rev, vol.140, pp.1133-1138, 1965.

F. J. Ehlers, M. Seydou, D. Tingaud, F. Maurel, Y. Charles et al., Supercell size convergence testing in uniaxial tensile test studies of an Al grain boundary: A proposed path to a robust analysis, Comput. Mater. Sci, vol.139, pp.39-47, 2017.

D. Udler and D. N. Seidman, Solute segregation at [001] tilt boundaries in dilute f.c.c. alloys, Acta Mater, vol.46, pp.1221-1233, 1998.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, vol.40, pp.3616-3621, 1989.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

O. H. Nielsen and R. M. Martin, Quantum-mechanical theory of stress and force, Phys. Rev. B, vol.32, pp.3780-3791, 1985.

C. Wolverton, V. Ozolins, and M. Asta, Hydrogen in aluminum: First-principles calculations of structure and thermodynamics, Phys. Rev. B, vol.69, issue.16pp, p.144109, 2004.

F. J. Ehlers, M. Seydou, D. Tingaud, F. Maurel, Y. Charles et al., Ab initio determination of the traction-separation curve for a metal grain boundary: a critical assessment of strategies, Modelling Simul. Mater. Sci. Eng, vol.24, issue.17pp, p.85014, 2016.

M. F. Ashby, F. Spaepen, and S. Williams, The structure of grain boundaries described as a packing of polyhedral, Acta Metall, vol.26, pp.1647-1663, 1978.

Z. X. Tian, J. X. Yan, W. Xiao, and W. T. Geng, Effect of lateral contraction and magnetism on the energy release upon fracture in metals: First-principles computational tensile test, Phys. Rev. B, vol.79, issue.10pp, p.144114, 2009.

A. R. Troiano, The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans. ASM, vol.52, pp.54-80, 1960.

Y. A. Du, J. Rogal, and R. Drautz, Diffusion of hydrogen within idealised grains of bcc-Fe: A kinetic Monte Carlo study, Phys. Rev. B, vol.86, issue.13pp, p.174110, 2012.

F. J. Ehlers, M. Seydou, D. Tingaud, F. Maurel, S. Queyreau et al., Ab initio studies of two Al grain boundaries subjected to mixed tension/shear mode loading: how shear may promote breakage, Modelling Simul. Mater Sci. Eng, vol.25, issue.17pp, p.64001, 2017.

L. Ismer, M. S. Park, A. Janotti, and C. G. Van-de-walle, Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis based on density functional theory, Phys. Rev. B, vol.80, issue.10pp, p.184110, 2009.

C. Quirós, J. Mougenot, G. Lombardi, M. Redolfi, O. Brinza et al., Blister formation and hydrogen retention in aluminium and beryllium: A modeling and experimental approach, Nucl. Mater. Energ, vol.12, pp.1178-1183, 2017.

L. Goodwin, R. J. Needs, and V. Heine, A pseudopotential total energy study of impurity promoted intergranular embrittlement, J. Phys.: Condens. Matter, vol.2, pp.351-365, 1990.

A. M. Tahir, R. Janisch, and A. Hartmaier, Hydrogen embrittlement of a carbon segregated ?5(310)[001] symmetrical tilt grain boundary in ?-Fe, Mater. Sci. Eng. A, vol.612, pp.462-467, 2014.

J. Song and W. A. Curtin, A nanoscale mechanism of hydrogen embrittlement in metals, Acta Mater, vol.59, pp.1557-1569, 2011.

K. Momma and F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr, vol.44, pp.1272-1276, 2011.