H induced decohesion of an Al grain boundary investigated with first principles: General conditions for instant breakage and local delayed fracture - Université Sorbonne Paris Nord Accéder directement au contenu
Article Dans Une Revue Computational Materials Science Année : 2019

H induced decohesion of an Al grain boundary investigated with first principles: General conditions for instant breakage and local delayed fracture

Résumé

The uniaxial tensile test response of a H decorated Σ5 [100] twist grain boundary (GB) in face-centred-cubic Al has been examined with first principles. The impurity shows a strong tendency to relocate during loading. To capture these H movements, the standard model framework was extended to probe loading-unloading hysteresis. Due to the strong monotonic decrease in the H formation energy with rising GB elongation, the maximum tensile stress accepted by the H decorated GB in the slow fracture limit generally is reached before breakage becomes thermodynamically favourable. For any intact GB configuration visited upon exceeding this stress, the assumption of global chemical equilibrium is argued to be violated. Moreover, while breakage remains ensured from the slow fracture limit considerations, it may in practice require the influx of H to the GB vicinity. A quantitative analysis of GB destabilisation in this scenario requires multi-scale modelling even in the slow fracture limit.
Fichier principal
Vignette du fichier
Manuscript-resubm.pdf (1.17 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02367144 , version 1 (17-11-2019)

Identifiants

Citer

F.J.H. J H Ehlers, M. Seydou, D. Tingaud, F. Maurel, Y. Charles, et al.. H induced decohesion of an Al grain boundary investigated with first principles: General conditions for instant breakage and local delayed fracture. Computational Materials Science, 2019, pp.109403. ⟨10.1016/j.commatsci.2019.109403⟩. ⟨hal-02367144⟩
41 Consultations
73 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More