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Exact integration for products of power of
barycentric coordinates over d-simplexes in R”

Francois Cuvelier®

2018/06/15

Abstract

Exact integral computation over a d-simplex in R" for products of
powers of its barycentric coordinates is done in [9] by using mathematical
induction and coordinate mappings. In this note we give a new proof
using Laplace transformations without mathematical induction.
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Local shape functions of a large variety of finite element on a d-simplex

K < R™ can be expressed in function of the barycentric coordinates { o, ..., A\q}
of K and their derivatives (see [I]] for examples).

In [9], the authors give a proof of the magic formula: let v = (vg,...,vq) €
IN+1 then

HVZ

f nw ) = dI| K| —=0 (1)
<d+2m>

where |K| is the volume of K. In their proof, mathematical induction and co-
ordinate mappings are mainly used. In this note we give a new proof of this
formula using Laplace transformations without mathematical induction.
Firstly we recall definitions of a d-simplex in R™ and of its barycentric co-
ordinates. Therafter we introduce Laplace transforms to compute the volume
of the unit d-simplex K < RY and the magic formula over K. In the last
section, we propose to compute the gradients of the barycentric coordinates
by solving linear systems. We also present the mapping of an integral over a
d-simplex in R”™ to the reference unit d-simplex, allowing to proove (1.

1 Notations and definitions

Let n € IN* be the space dimension and d € [0, n]. We recall the definition of a
d-simplex in R™ as well as its barycentric coordinates.

Definition 1 (d-simplex) A d-simplex K < R"™ is the convez hull of (d + 1)
points @°, . ..,q% of R™ which form the vertices of K.

d d
K = {qeR" |a =) 60", withVie[0,d], 6; >0, and 291:1}. (2)

=0 =0

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. It will
be always assumed that a d-simplex is not degenerated, i.e., the set of vectors
{@' —q°}< ; is linearly independent.

Definition 2 (Barycentric coordinates) Let K — R™ be a non-degenerate
d-simplex and {Q'}{_ its vertices. The parametrization of K with a convex
combination of the vertzces reads as follows

K—{quR"|q ZA q)q’, with Vi€ [0,d], \i(q) =0, andzx\

3)
The coefficients \o(q), ..., Aa(qQ) are called the barycentric coordinates on K of
q.

As immediat property, the barycentric coordinates on K satisfy

Xi(@’) =iy, V(i) € [0,d]. (4)



2 Some results on the unit d-simplex

The unit d-simplex K¢ = RY is defined by the d + 1 vertices

{q07q17"' 7Ad} = {07é17"' aéd}

where {él, e ,éd} is the standard basis of RY. We have
A~ ~ d ~
Kd={QERdQ=Z)\()q,W1th>\ Z)\ —1} (5)
i=0 i=0
As immediat property, the barycentric coordinates (5\1)?=0 on K4 satisfy
\i(@’) = 6; 5, V(i,j) € [0,d]. (6)
and are explicitly given with q = (z1,--- ,24)" € K9 by
~ d ~
M@ =1->z; andVie[Ld], \(q) =z (7)
i=1

Indeed, as §° = 0, we have
d ~ . d . A
q= Z Ai(@)a" = Zd’Ai((i)

From §' = &', Vi € [1,d], we obtain

d | | A1(Q) A1(q) A1(q)
Zfi‘i - | & §<id) o=l =
=t ; | Aa(@) Aa(@) Aa(@)
and thus .
T A1(@)
o ) ("
Zd Xd(d)
From , we have
d
Dihi@ =1
i=0
and thus
d d
M@ =1-> A@=1->
i=1 i=1

2.1 unit d-simplex volume

There are several ways to compute the volume |K| of the d-simplex K < R4
which is given by the following integral:

. 1—zy pl—z—xo 1—(z1+...+za-1)
| K| =J. 1dq = f J J J 1dzq . ..dxsdzadr;.



An elegant way to perform this integration is explained in [6], section 18.10, and
uses a Laplace transform. To use this method, we note that

K=RYn{l—(x+...+zq) >0} (8)
So we also have

|I§'|:J‘ ldzq...dx1.
R~ {l—(z14...+24)=0}

By using a dirac function and extending the integration domain to R‘f’l, we
also have

‘K| :f 5(x1+...+xd+xd+1—1)dxd+1dxd...dx1
R+

+

To use the Laplace transform theory, we define the function f by

ft) = J §(x1 + ...+ xq + a1 — t)dxgirdeg ... dry
R+

so that |K| = f(1). The Laplace transform of f is given by
Q0
LN = [ roear
0

o0
= J <J 0(xy + ...+ xq + Tas1 — t)eStdt) drgiidzg .. .dx
R \Jo

d+1
= J exp(—s 2 x;)dxg41dxy . . . dzy
R+ —
+ =1

d+1

L1
=1
1

0
J exp(—sz;)dx;
0

prESE
By using the inverse Laplace transform table (see [8] for example), we have

- d!

As f = L0 L(f) and by linearity of the inverse Laplace transform we obtain

td
f(t) = a
So the volume of the unit d-simplex is
. 1
I )



2.2 Magic formula

Let v = (vg,...,vq) € N1 The magic formula is given by

d d
Lg E)Ai (@dq (d+ Z?=0 v;)!

(10)

This formula is often used in P!-Lagrange finite element methods because P*-
Lagrange basis functions on a d-simplex are the associated barycentic coordi-
nates. For example, one can refer to [7] (section 8.2.1, page 179, formula (8.3)),
9], [4] section 7.3.3 page 126, [3] for d € [1,3], [2] as exercise for d = 2 and
d = 3. In this section, we propose a proof of this formula using Laplace trans-
form theory. Let I (v) denote the integral of . The barycentic coordinates

\; are given in (7) and so with q = (z1,...,xq) and using we obtain

From section by using a dirac function and by extending the integration

domain to RE™ we obtain with vq1 = vo

d
I(v) = L{d“ O(ry + ..o+ g+ warr — Dy, nx?id$d+1d1'd ...dzy
+

i=1

d+1
= f . 5(151 + ...+ 2q +Tq41 — 1) nx?idderldxdu.dxl
Ry

i=1
To use the Laplace transform theory, we define the function f, by

d+1

fult) = J o 0(xy+ ...+ xg + 2441 — 1) H x drqiideq ... dxy
]R+

i=1

so that I(v) = f,(1). The Laplace transform of f, is given by

£ - | " et

o0 d+1
= Sy + ...+ 2g + 241 — t)e Sdt nm;’ drgyrdrg ...
Rd+1 0 N
+ =1
d+1  d+1
— _ . Vi
= JRd+1 exp(—s Z x;) H x;" drqiideq ... dx
+ i=1 i=1
d+1 roo
- 1_[ f x;t exp(—sx;)dx;
i=1+0
d+1

= 1_[ L(t— t7)(s)

dZEl



In a classical Laplace transform table (see [8] for example), we have

tk 1
Lt = )(6) = 7

and by linearity of the Laplace transform

Lt 9)(s) = oy

So we obtain

bl A+l
£l = [ 2y = Ll

d+1
o A1+ v

By using the inverse Laplace transform table, we have

o ’_)i B tkfl
L (s> 1)) = 1

With the linearity of the inverse Laplace transform we obtain
fu(t) = LHL()())(E)

d+1
[izy vi! A+ v
d d+1_ 5, :
( +Zi:1 l/l').

As I(v) = f,(1) and v441 = 1, the equation is proved.

3 Some results on a d-simplex in R"

3.1 Gradients of Barycentric coordinates on a d-simplex

Lemma 3 Let K = R™ be a non-degenerate d-simplex and and {q'}{_, its
vertices. The barycentric coordinates (\;(q)){_, are solution of the linear system

Ll L (Ll 1
0 )\1((1) """"""""
. ! = 0 (11)
S ALAg ; Ax(q—q’)
0 ! Aa(q)
where Ax € M,, a(R) is defined by
L
Ak =| q —-q" - q'-q° (12)
|

The barycentric coordinates are multivariate polynomials of first degree and their
gradients are given by

(V@) -1 V@) ) = Ax(AkAL) ™ (13)
and .
V \o(q) = —ZVAi(q)- (14)



Proof: As Z?:o Ai(q) = 1, we have

d d Ai(Q)
a=> M@d —a-q" = @ -a )@ =Ax | :
=0 i=1 )\d(Q)

Due to linear independence of {q’ —q° ?:1,
Hy & AL AK€ Mg a(R) (15)

is a regular matrix and the barycentric coordinates are solution of the linear
system

A1(q) d
AAk | 1 | =Ak(@—q°) and ] Ni(q) = 1.
Aa(q) =0

In matrix form these equations can be written as and we deduce that the
barycentric coordinates A; are multivariate polynomials of first degree. So their
gradients are constants on K.
The affine map/transformation Fy from the unit d-simplex K < RY to
K < R" is given by
a - Axd +q° = F(@). (16)

So we have
Ak (a—q") = ARAkG = Hkq
and thus F;! : K ¢ R* — K < RY is defined by
4 =HzgA%(a-q") = F¢ (). (17)
So we have
Ai(@) = (hioFi)a@) and Xi(@) = (A o Fx)(@) (18)
One can remark that if d = n then Ag is a regular square matrix and HZA% =

Azl
Now, we may compute partial derivative of A\; and Vi € [0,d], ¥j € [1,n],

we obtain with q = (&1,...,2q) and q = (z1,...,2p)
oN; ) VN

From (T7), denoting B = HitAY € Mam(R) gives “254(q) = (Bx)r;. The
barycentric coordinates are polynomials of first degree, so their gradients are
constants and we obtain

VA = BL VA

(in fact By is the Jacobian matrix of F7!). The matrix Hg is regular and
symmetric, so Bt = AxH3} and we obtain

Vi = AgHREV A, (19)



From , we deduced that

(Vi VA ) =l (20)
and thus
(V@ | V@ ) = AcHit(Wh | i VA
= AgHz.

As Z?:o Ai(q) = 1, we immediately have

d
V@) = - V()

i=1

From and , we immediatly have:

Remark 4 The gradients of the barycentric coordinates are linear combinations
Of {ql _qO’ cee aqd _qO}

3.2 Integration over a d-simplex

If K is a non-degenerated d-simplex in RY, from we have Jr, (q) = Ax.
Then Ak is a regular square matrix and we have the classical formula:

j f(@)dq = |det<AK>|fA f o Fre(@)d (21)
K K

The following theorem extend this result to d-simplex in R"™, with 1 < d < n.

Theorem 5 Let K < R™ be a non-degenerated d-simplex and f : K — R.

| rada = aeearan] | 7o Fi@da (22)
where K is the unit d-simplez in R™, Ax € Mq (R) is defined by
AK:(qlqu§q27q05-~~§qd*q°) (23)
and Fr : K — K is given by
Fr(@) = Axq +q° (24)

Proof: The set {'vl, . ,vd} is linearly independent so we can extend it to a
basis {v',...,v"}. We denote by A € M, ,(R) the matrix such that the i-th
column is the vector v* for all ¢ € [[1,n]. So we have

A= (A fut o) (25)

By the QR-factorization theorem apply to the matrix A € M, (R), there is
an orthogonal matrix Q € M,,(R) and a regular upper triangular matrix R €
M, (R) such that

A=QR



So we have

Q*A=R
and we define the matrix A € M,, 4(R) to be the first d columns of R:
A =Q%Ax.
We can also note that
A:((ll—‘_lo i(—l2_(—lo E i(—ld_(—lo ) :((—11 i‘_l2 E i(—ld )
Let F : R® — R™ be the bijective function defined by
F@)=Q(z-q") =2 (26)

and . o .

qd' = F@q)=Q'q" —q"), Vie[0,d].
By construction @ = 0 and, Vi € [1,d], @ is the i-th column of the upper
triangular matrix R. So we have

Vie [0,d], q' e Vect(el,..., ed)

where {e',... e"} is the standard basis of R". The set {§°,...,q"} are the
vertices of the d-simplex K = F(K) and we deduce

K < Vect(e!, ... ed). (27)

By change of variables, we obtain
| r@da= | foF@|det(Tr @)lda
K K

where Jz.1 is the Jacobian matrix of 7-*. From (26, we have Jz.:(q) = Q and
as Q is an orthogonal matrix, det(J#:(q)) = 1. So we obtain

| f@da-| ro7i@da (28)
K K
Let P e Mg ,(R) defined by

P=(l ; Od.n—d )

and ‘ ‘
Vie [0,d], q'=Pq'eR%.

From (27), we deduce

Let g = foF ! and K be the d-simplex in RY with vertices §', i € [0,d]. We
denote by P : K ¢ RY — K < R" the application defined by P(q) = P*q. We
denote by g : K — R the application defined by

QI

@ =goP@ = g(g)



So we obtain
| s@da- | s@aa (29)
Let A e Mq(R) be the matrix defined by

;\=<C_ll—‘=lo 562—60

We can remark that

g g ). (30)

A=PA and A=P°A.

Let F: K —> K the bijective function defined by
F@=Aa+q

We can now apply the classical change of variables

| s@da=| g0 F@ldenTz @)

K
~JdetA)] | o F@da
To resume from and , we have
| f@da=jaet(d) [ 5o F@da (31)
K K
We can note that
f]o]i': fo]t-‘lo’Po]?
Let Fx = F1oPoF, we have as expected
Fx(@=FtoPoF@
— F(P*(AQ))
=F(Aq)
=QAq+q’
= Axq+q’.

and we obtain

f f(@)dq = | det(A)] f foFrl@da (32)
K K

To obtain formula (22), it remains to prove that |det(A)| = |det(A%Ag)[Y/2.
We have

At Ax = ALQQ Ak as Ax = QA
= A*A as Q is an orthogonal matrix
— A"PP*A as A = P*A
—A'A as PPt = I

As A is a square matrix, we have det(zt,a) = det(A)? and thus

|det(A)| = | det(AL Ag)[Y2.

10



3.3 Volume of a d-simplex

The volume/measure of the d-simplex K < R™ is given by
K| = | 1dq (33)
K
Using formula with f =1 gives
K| = [det(AcAr)|” [ 1dq = fdet A" K],
K

From @D, we finally obtain

|det (A% Aw)[?

K| = i

(34)

In [5] this formula is proved with geometrical arguments. We can also remark
that if d = n then Ay is a square matrix and we obtain the classical formula

|det(Ak)]

(35)

3.4 Magic formula

In this section an exact computation of the integral over a d-simplex K < R"
for products of power of its barycentric coordinates given by is proved by
using previous results obtained by Laplace transforms.

Using formula with f(q) = H?:o A" (q) gives
d 12 d
[ T @da = laescascaol ™ [ TTone Fea@)da
K i—o K=o
From and , we obtain

d d
| T @da = al | [T @da
K=o K=o
Using formula gives
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