B. O. Almroth, P. Stern, and F. A. Brogan, Automatic choice of global shape functions in structural analysis, AIAA Journal, vol.16, issue.5, 1978.
DOI : 10.1115/1.3564770

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ???empirical interpolation??? method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
DOI : 10.1016/j.crma.2004.08.006

URL : https://hal.archives-ouvertes.fr/hal-00021702

D. Bonomi, A. Manzoni, and A. Quarteroni, A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics, Computer Methods in Applied Mechanics and Engineering, vol.324, pp.300-326, 2017.
DOI : 10.1016/j.cma.2017.06.011

M. Burger, A framework for the construction of level-set methods for shape optimization and reconstruction , Interfaces and Free Boundaries, pp.301-329, 2003.

R. Craig and M. Bampton, Coupling of substructures for dynamic analyses, AIAA J, 1968.
URL : https://hal.archives-ouvertes.fr/hal-01537654

R. P. Dwight, Robust Mesh Deformation using the Linear Elasticity Equations (eds) Computational Fluid Dynamics, 2006.

J. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations, 2016.
DOI : 10.1007/978-3-319-22470-1

URL : https://hal.archives-ouvertes.fr/hal-01223456

W. C. Hurty, On the dynamics of structural systems using component modes. AIAA paper no, pp.64-487, 1964.

D. B. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation reduced basis element method: Approximation and a posteriori error estimation, pp.213-251, 2013.

D. B. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation reduced basis element method: Complex problems, Computer Methods in Applied Mechanics and Engineering, vol.259, pp.197-216, 2013.
DOI : 10.1016/j.cma.2013.02.013

P. Huynh, D. J. Knezevic, L. Nguyen, and A. T. Patera, PDE Apps for Acoustic Ducts: A Parametrized Model-Order-Reduction Approach, 2016.

Y. Maday and E. M. Rønquist, A reduced-basis element method, Comptes Rendus Mathematique, vol.335, issue.2, pp.447-459, 2002.
DOI : 10.1016/S1631-073X(02)02427-5

URL : https://hal.archives-ouvertes.fr/hal-00112608

Y. Maday and E. M. Rønquist, The Reduced Basis Element Method: Application to a Thermal Fin Problem, SIAM Journal on Scientific Computing, vol.26, issue.1, pp.240-258, 2004.
DOI : 10.1137/S1064827502419932

URL : https://hal.archives-ouvertes.fr/hal-00021699

A. K. Noor and J. M. Peters, Reduced basis technique for nonlinear analysis of structures, 20th Structures, Structural Dynamics, and Materials Conference, 1980.
DOI : 10.1016/0045-7825(77)90018-4

A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations: an introduction, 2015.
DOI : 10.1007/978-3-319-15431-2

G. Rozza, D. B. Huynh, and A. T. Patera, Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations, Archives of Computational Methods in Engineering, vol.40, issue.11, pp.229-275, 2008.
DOI : 10.1016/j.crma.2003.09.023

URL : https://hal.archives-ouvertes.fr/hal-01722593

K. Smetana and A. T. Patera, Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures, SIAM Journal on Scientific Computing, vol.38, issue.5, pp.3318-335, 2016.
DOI : 10.1137/15M1009603

K. Stein, T. Tezduyar, and R. Benney, Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements, Journal of Applied Mechanics, vol.134, issue.1, pp.58-63, 2003.
DOI : 10.1016/0045-7825(95)00988-4

T. E. Tezduyar, M. Behr, S. Mittal, and A. A. Johnson, Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis, pp.7-24, 1992.