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Component Mapping Automation for Parametric Component
Reduced Basis Techniques (RB-Component) *

Rachida Chakir! Charles Dapogny* Caroline Japhet? Yvon Maday?
Jean-Baptiste Montavon? Olivier Pantzl Anthony Patera**

Abstract

The aim of this paper is to develop some techniques for automation of the mappings (between working
and reference domains) required by reduced basis methods: the development of geometry mappings is
indeed often a substantial impediment to the implementation of reduced basis techniques, especially in
the context of the reduced basis element method (RBEM) and the reduced basis component method
(RBCM). In the RBCM context, the geometry mappings are applied at the level of components. The
methods have been tested on various cases to understand the limits of the approach and try to foresee
and overcome the possible failures.

Introduction and motivation

The objective of this project is to compute — in real-time — the solution to parameter dependent partial
differential equations (PDEs), where the parameters include geometrical factors generically denoted here as
p- In this paper, the PDE we consider as an example is the Laplace problems (1) set on the spatial domain
Q, C R? (d = 2 or 3) with varying values of given sets of geometrical factors p : Find ¢ € H'(,) such that

Ay = 0 in Q,,
(;5 = gf on Ff, (1)
¢ = 0 onl,,

where the boundary 0f), is composed of two parts: 0Q, = I'y UT', with I', the parameter dependent
boundary of the parametrized domain and I'; the fixed boundary (possibly empty). [-] and gy is an
appropriate functions.

Classical discretization techniques, such as finite element methods, may be too expensive if multiple
resolutions are required or real-time response is expected. In this perspective, the Reduced Basis (RB)
method [1, 16, 18] exploits the parametric structure of the PDE to construct fast and computationally
efficient approximations.

To be even faster the RB method may be combined with Domain Decomposition and leads to component-
based RB approaches namely the reduced basis element method (RBEM)[14, 15] and the reduced basis
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component method (RBCM) [11, 12, 19]. In these versions of the reduced basis method, the domain of
interest €2, (where the PDE is set) is decomposed into a series of subdomains with simple shapes called
components 2, = UX_ Cy , [5, 10]. Let us consider for example the case of Fig. 1 that represents the spatial
domain of a horn for which the length L and the radii ag and a,eusn can vary [13].

Figure 1:

The decomposition that is proposed in the frame of the RBCM is exemplified on Fig. 2.

2900

Figure 2:

Each of the components featured in there is obtained by deformation of one reference component chosen
among a set of few reference components. Each reference component is provided with some basis functions
(reduced basis functions) that represent the behavior of the set of all the PDE solutions on such subdomains.
The restriction of the solution to (1) to every component is then sought as a linear combination of those
basis functions mapped onto the component from the associated reference component.

The objective of this RB-Component project is to rapidly propose the mapping that needs to be used
to transfer back and forth all the informations (mesh, reduced basis, geometrical factors) from the reference
components to each associated subdomain in €2, in order to solve the PDE of interest on the global domain
Q,.

It is not uncommon to use the elasticity equation to lift boundary data into the interior for the purpose
of geometry mappings (for example, for ALE fluids calculations) or mesh generation, see [21, 20, 8, 6].

In our approach we propose new strategies to generate these maps using the solution w to a linear
elasticity problem. Each new subdomain is obtained by deforming the appropriate reference component
through a map 7' : £ — & + u(Z) that only has to send the boundary of the reference component onto the
boundary of the subdomain.

The different methods that have been tested differ from the way the displacements u are imposed on the
component boundary. The first technique that we have investigated, consists in simply imposing classical
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Dirichlet boundaries conditions, but it requires an explicit parametric definition of the boundary component,
which is not always possible. The second approach that we have studied, consists in a penalization method
which only requires an implicit caracterization of the boundary; though this description of the boundary is
less precise it appears sufficient for our purpose.

In what follows we shall focus on a single component, in the sense that we do not perform any domain
decomposition. There is thus only one reference component and the corresponding deformed component.
In Sec. 1, we tested these different approaches to build an automatized mapping in order to solve Laplace
problems as (1) over different kinds of geometry. Then, in Sec. 2 we present the mapping used in a reduced
basis method context.

1 Computation of the displacement field for the mapping and
resolution of the Laplace equation on the deformed domain

Let p be a set of geometrical factors used to parameterize the geometry of the unique component C , = €2,
and Q.o the reference domain. The aim of this paper is to propose automatized techniques to build a
mapping T from the domain Q..s to the domain €,. We consider here only the two-dimensional case
(d = 2): we denote by (Z1,Z2) the coordinates of the point Z in the reference domain Qef, (x1,22) the
coordinates of the associated point x in §2,. We choose a mapping T as follows

- Iy o —\ Tl(f) o —\ T +u1(:17;)
z—<x2>—T(a:)—(T2(x) >—x+u(z)—<x2+u2(x) (2)
where u(Z) = (u1(Z),u2(Z)) is the displacement. As said above, we choose that the displacement is the

solution of a linear elasticity problem over the reference domain ef:
Find u € V such that

/ 2ue(u) :e(v) + Adiv (w)div (v) dz =0, Vove (H&(me))z, (3)
Q

ref

where V is a space that is in some sense defined as (the precise definition being given hereafter)

V ~{v=(v1,v2) € (H (et))?; v=00nTy; T+v(Z) €T, VI € et}

A\ p) = ((1+V§If—2u)v 2(131/)) are the Lamé coeflicients, with E the Young’s modulus and v the Poisson’s
ratio, and e is the linearized strain tensor given by

611(“) = 5@“17
exn(u) = Ozus, (4)
enn(u) = exn(u)= %(3121&1 + 0z, u2),

with the notation e(u Zem u)e; ;(v

It is classical, and will be 1nstrumental for our approach, to remind that problem (3) is linked to the
problem of minimizing the energy

/ A(div ()2 + 21> e (w)?)dz. (5)
Qrot ij

and the first choice of space V, in line with this minimization process, is called here an explicit version
(called also “pointwise”) : assuming that s — Z(s) (resp. s +— z(s)) is a one-to-one parametrization of I’
(resp. of 'y ):

V = Viplicit := {v = (v1,v2) € (H(er))?; v =0o0n I'y; v(Z(s)) = z(s) — Z(s), Vs}.

At this level it is interesting to recall that there are two ways to impose Dirichlet boundary conditions:
the strong one where the discrete solution belongs to V' and the weak one where the boundary condition
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is satisfied through a penalization formulation. In what follows we will first test these two ways and then
focus on the weak one that appears much more simple to implement. In addition the weak formulation
only requires an implicit caracterization of the boundary which is generally much more simple than having
a parametrization (especially in higher dimension that will be dealt in a future paper Q, € R3). This leads
us to introduce an implicit version (called also “slippery”) of the space V' : assuming that T, is defined as
the set of points z in R? such that F,(z) = 0:

V' = Vimplicit = {v = (v1,v2) € (Hl(ﬂref))2; v=0onTy; F(x+v(x)) =0, VZ € T'yer}.

Let us now proceed to the use of the map from the reference domain: a simple change of variables leads
to

/w.vudx:oz/ KVz(¢oT)-Vz(voT)dz
Q Q

p ref

with
K=J"'77"J], (6)

where J is the Jacobian matrix of T':
g (P e\ _ [ 0,(Ti@)
aﬂ?lx2 8532$2 83771 (T2<"i.))
and J is det(J), more precisely, this reads

K=L ( (02, (T2(%)))* + 05, (T1(2))* —(0z,(T2(x)) Oz, (T2(%)) + 0z, (T1(Z)) Oz, (T1(2)))
[T\ =0z, (T2(Z)) Oz, (T2(Z)) + 0z, (T1(Z)) Oz, (T1(Z))) (05, (T2(2)))* + (0 )

with J = 0z, (T1(Z)) Oz, (T2(Z)) — 0%, (T1(2)) Oz, (T2(Z)).

One convenient way to verify that the mapping as defined above is correct, with respect to our aim
which is to simulate partial differential equation on Q,, is to consider the Laplace problem (1) over 2, that
we state here under a weak formulation:

Find ¢ € W :={z € H'(Q,); 2z=gs onTy; 2=0onT,} such that, Vo € H}(Q,):

/V(b-Vvda::O:/ Opy P Oy ¥ + Opyd Oy v dx. (8)
Q, Q,

In what follows we tested different approaches to compute the displacements u which will be used in
the mapping T for several test cases. All the simulations have been done using P; finite element within
Freefem++ [7]. Several examples are presented to compare different solution algorithms but also different
treatments of F, (e.g., explicit versus implicit). More precisely, we first present in Sec. 1.1.1, a circular hole
with pointwise Dirichlet strong boundary conditions, which are the natural way to impose the displacement
on the boundary I',. As it is difficult to use strong Dirichlet conditions for the general case, and we
propose instead to use a penalized approach: we provide in Sec. 1.1.2 a comparison with penalized Dirichlet
conditions. Then we consider a uniform shear square (with linear F,) with strong (in Sec. 1.1.3), and
penalized (in Sec. 1.2.1) Dirichlet conditions. The conclusion is that we do not loose much when using a
penalized formulation. Thus we use a penalized version to treat increasingly more complex deformations: a
non-uniform shear square (with nonlinear F,,) in Sec. 1.2.2, then a bell (with nonlinear and large amplitude
F,) in Sec. 1.2.3, and finally a crescent moon with a cusp, in Sec. 1.2.4.

1.1 Computation of the displacement using Dirichlet boundary conditions
1.1.1 Example 1: square with a circular hole and strong Dirichlet boundary conditions

In this example, we consider a generic component in the form of a square [—1,1] x [—1,1] where a disc of
radius a and centered in ¢ = (0,0) has been removed, the reference will have about the same shape except
that the removed disc will have a radius equal to a (see Fig. 3).
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Figure 3: Left: reference domain §),c; Right: generic parameter dependent domain §2,.

In this example the set of parameter p is made up of the radius a. In the generic parameter dependent
domain 2,, the boundary I', represents the parameter dependent boundary I',. To compute a displace-
ment u that describes the mapping from the reference domain €,..r to the generic domain 2,, we solved a
linear elasticity problem with homogenous Dirichlet boundary condition on the fixed boundary I'¢, and non
homogenous Dirichlet boundary condition

a _ a
up = (5 -1z, up= (a

on I'yef — which represents the boundary of the reference domain that will be deformed in order to get the
generic boundary I', =T', :

u@) = (2-1)& forz € Ny 9)

—

In what follows we choose to set the Young modulus to £ = 1 and the Poisson ratio to v =
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Figure 4: reference mesh Trer (left), deformed mesh Tpnap (middle) and true mesh 7, of the generic domain
(right).

In Fig. 4 we represented the mesh 7.or — a regular triangulation with 200 vertices on I';, and 50 vertices
on I'yef — associated to the reference domain (for @ = 0.2) (left), and meshes associated to the generic domain
(for @ = 0.3): the deformation Tmap of Trer due to displacement u (middle) and the true mesh 7; of the
generic domain €2, (right) built independently but similarly as 7T.e;. We observe that the deformed mesh
fits well with the objective (larger red circle represented on left and middle meshes of Fig. 4) and, at least

from the eye point of view, appears rather regular and quite similar to the mesh 7} with 200 vertices on I'f
and 50 vertices on I',.
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In order to better quantify the quality of a mesh, we produce in Table 1 below classical quantities
associated to the mesh. As usual, we denote by h, hpin, Bmean the maximum, minimum and average mesh
size of Ty, respectively. We also introduce 617 = Z—;, where pr is the diameter of the incircle of a triangle
T C Tp, and for reference o = g—;, where T is an equilateral triangle. Then o, 0min, Omean denote the
maximum, minimum and average of op for T' C T}, respectively. These results highlight the regularity of
the mesh obtained by our transformation.

Mesh hmin h hmean Omin Omax Omean

Tref 0.0229928 | 0.0608276 | 0.0406712 | 1.0017 | 2.00469 | 1.22308
Tmap | 0.0211265 | 0.0605998 | 0.0404186 | 1.00072 | 3.08991 | 1.26059
Th 0.0313417 | 0.0662119 | 0.0471112 | 1.0045 | 2.02893 | 1.23075

Table 1: Example 1: classical quantities associated to the meshes Tref, Tmap and Ty

We denote by X} the P; finite element approximation of H}(£2,) associated to the mesh 7, and by X,
the PPy finite element approximation of X = {z € H*(Q,); 2z = fonI'y; 2 = 0on I',} associated to the
mesh T;,. Let ¢p, € X}, be the solution of the true discrete approximation of (8)

Von -Vipde =0 Vi, € X5 (10)
Th

We denote by X7 the Py finite element approximation of Hj(Q,) associated to the mesh Tiap and
Xmap the Py finite element approximation of X associated to the mesh Tyap. Let ¢map € Xmap be the
solution of the following discrete approximation of (8)

K Vz(¢mapoT)-Vg(voT)dr =0, Yo € X, (11)
Tref

where K is the mapping matrix defined by (6).

In order to validate this mapping approach to solve our Laplace problem (8) with gy =1 and I', = T',.
We have computed a true discrete approximation on the mesh 7, and approximation using the mapping
approach with a = 0.2 and a = 0.3.

In Fig. 5 we show the solution ¢n,ap (left) and the relative error measured in the L>-norm between ¢y,
and Ip¢map, where I, is the interpolation operator from Xp,ap into Xp.

This error is on the order of h%, where h is the maximum mesh size of 7, (see Table 1), as might be
expected from usual interpolant estimates, the order-unity derivatives for the data given, and the geometric
factors.

1.00000e+00

111 il anaiainiii
=) o
p— w
[¢)]

~—0.00000e+00

Figure 5: Left: solution ¢map; Right: relative error between ¢ and Iy ¢map-
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1.1.2 Example 2: square with a circular hole and penalized Dirichlet boundary conditions

In this section we replace, in the linear elasticity problem, the non-homogeneous Dirichlet boundary condi-
tion on I', by

u—(a—a)n=0.
This boundary condition is imposed in a weak form, using a (quadratic) penalty method: we replace the

constrained minimization problem
inf J(w), (12)

weVy; w—(a—a)n=0
by the unconstrained problem

inf J(we)—l—%G(we) , (13)

w.EeV)y
with
Vo ={v € H (Qer))?; v1 =va =0o0n Ty} (14)

and

G(w.) =

lw, — (@ — a)n|?dl.
2 et

Let u be the solution of minimisation problem (12) and u. the solution of minimisation problem (13), we
have

|lwe —ul] — 0.
e—0

Besides, finding a solution to the minimisation problem (13) is equivalent to finding a solution to the
following variational problem: Find u € V{, such that Yv € 1},

1
<VJ(U),’I)>V07VOI + E<VG(U)7'U>VO,VO' =0,
which can be rewritten as follows : Find u € Vj, such that Vv € Vj,

1
2ue )div (v) dz + —

Qrer

Yo e Vp. (15)

A AT A A A VAT A PVl N N N N SR RAT AT T AT, s i v Aiasi | vaTavaraTa IS
e S ook e S oS e A T TN o e
R e OO A A A DN NSRS R ] PR R A A A A A N NN NN S SRR |
s B P e S
e A e AT g e A Ly T S v OB 8 AN e A b o s ipi i A i A N
R T e A e A K R N SIS AR Y o N A R A R
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KRR OR B e D n et R Sy ) NI b TS N B Y A A A i rar By, AN PRk RSN
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Figure 6: Left: reference mesh 7yef; Right: deformed mesh Trap.

In Fig. 6 we represented the mesh Tref associated to the reference domain (for a = 0.2) (left), and the
mesh associated to the generic domain (for a = 0.3) : the deformation of Tyt due to displacement u (right),
which is very similar to the mesh obtained in the previous approach where we imposed non-homogenous
Dirichlet boundary conditions on I'y = I';. As done in the previous example, in order to better quantify the
quality of a mesh, we produce in Table 2 quantities associated to the mesh 7y, obtained by our mapping
(see Sec. 1.1.1). The quantities associated to Tyef and Ty, are already given in Table 1. Again, the results
highlight the regularity of Tmap. Moreover, we observe that the results of Table 1 and Table 2 are almost
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the same, and thus using penalized conditions appears to be a good alternative to using strong boundary
conditions.

Mesh hmin h hmean Omin Omax Omean
Tmap | 0.0211276 | 0.0605997 | 0.0404187 | 1.0007 | 3.09102 | 1.26065

Table 2: Example 2: classical quantities associated to the mesh Tmap

1.000002+00 1.381e-03
o Eoom
50-75 =001
—Eo.é é0.0008
Eo.as 0.0006
ko.s :0.0004
015 0.0002
- go.oooe+oo

Figure 7: Left: solution ¢map; Right: relative error between ¢, and I ¢map.

We consider the same Laplace problem as in the previous example. In Fig. 7 we show the solution ¢map
(left) and the relative error measured in the L*°-norm between ¢, and Ij,¢pmap, where Iy, is the interpolation
operator from Xyap into Xp. This error is on the order of h? (see Table 2), as might be expected from
usual interpolant estimates, the order-unity derivatives for the data given, and the geometric factors.

1.1.3 Example 3: deformed (uniform shear) square with strong Dirichlet boundary condi-
tions

In this example we consider the deformation of the unit square [0, 1] x [0,1] as in Fig. 8.

©,1) I3, (1,1) ©0,1) r (o +B,1)
Ff Qref 1T‘I?ef Ff Qp F%

0,0 = 1,0 0,0 ,0

(0,0) I (1,0) ©0) (@0

Figure 8: Left: reference domain {2..¢; Right: generic domain 2,.

The set of varying parameters p is made of the coefficient o and 3. In the generic domain €2,, the
parameter dependent boundary I', is made of the union of Ff), 1 <4 < 3 and respectively I'yef is made of
the union of T% ., 1 < i < 3.

ref?
In order to compute the displacement that describe the mapping from the reference domain €, to the
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generic domain 2, we associate the following Dirichlet boundary conditions to the linear elasticity problem

u = (a—1)z onT}
up = (a+z28—-1)z; on Ff),
u;y = (Oé + 56— 1)@‘1 on Fg
u; = 0 on Iy,
up = 0 on 9€,,.

In Fig. 9 we represented the mesh 7.of — a regular triangulation with 50 vertices on I'y and each FZ, 1<:<3
— associated to the reference domain (left) and the deformed mesh Tpap for o« = 2 and § = 1 (right). As
previously, we observe that the mapped mesh fits well with the objective (in green).

Figure 9: Left: reference mesh 7y¢f; Right: deformed mesh Trap.

In Fig. 10, the mesh 7}, of the generic domain €, with o = 2 and 3 =1 is represented.

Figure 10: mesh 7}, of generic domain Q, with o« =2 and =1

00+00 00005 0001 00015 0002 0.0m5 0,003 0.0035 4,1360-03
HH‘HHHH ‘\ JHHH‘HHHJH‘JH

0.00 X
0.1 0.14 0.18 0.21 2.500e-01 I |11]
H\HH‘H\HHH\H\HHH\HHW W W
Cnr vy

0.000e+00 0,035 0.07

—

Figure 11: Left: solution ¢map; Right: relative error between ¢y and Iy ¢map-

We consider now the Laplace problem (8) with g5 = (1 — x2)z2. In Fig. 11 we show the solution ¢map
(left) and the relative error measured in the L°°-norm between ¢, and Ij,¢map, where Iy, is the interpolation
operator from Xp.p into Xp. This error is approximately O(h?) where h is the mesh size of 7, . As
expected, the error is on the order of h? as in the previous examples.
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1.2 Computation of the displacement using a penalty method

The technique that we have investigated in section 1.1 consisted in simply imposing Dirichlet boundary
conditions in order to control the displacements % on the component boundary such that the deformation of
the reference domain 2,.s matches with the generic domain 2,. However, this approach requires an explicit
parametric definition of the boundary component, which is not always possible. The second approach, that
we now present, only requires an implicit caracterization of the boundary I',. This is done by the use of a
functional F, defined such that

F,(z) =0, on .

The idea is to compute a displacement u such that F,(Z +u(Z)) = 0 on the boundary I'\c, which leads to
the following constrained minimization problem

wlenéb, J(w), (16)
F,(&+w)=0 on Tpop

in which J(w) and V{ are respectively given by (5) and (14). Nevertheless, we decided to weakly impose the
constraint F,(Z 4+ u(Z)) = 0 using a penalty approach, which leads to the following unconstrained problem

w.eVy €

1
inf (J(we) + f/ (F,(z +w,))? dF) , (17)
Fref
which leads to solving the following variational problem: Find u € Vj, such that Yo € Vj,

/ 2ue(u) :e(v) + Adiv (u) div (v) dz + 1/ (2F,(z +u)(VF,(x +u),v))dl' =0, Vvely (18)
Qrer Drer

€

In what follows we consider different examples with affine or nonlinear function F,. In the nonlinear
case, we propose different approaches to solve the problem, using a fixed-point method or a steepest descent
method.

1.2.1 Example 4: deformed (uniform shear) square

In this example we consider the deformation of the unit square [0,1] x [0,1] as in Sec. 1.1.3 ( see Fig. 8).
The set of varying parameters p is the same as in Sec. 1.1.3. The reference domain and the associated mesh
Tref, the generic domain and associated mesh 7}, are also the same as in Sec. 1.1.3. The functional F), used
to describe the boundary I, is defined by:

T onT},
Fp(z) = 5562 — 1 +a on F?),
To — 1 on I‘%.

Figure 12: Left: reference mesh Trer; Right: deformed mesh Tmap.

In Fig. 12 we represented the reference mesh (left) Tyt and the deformed mesh Tmap with o = 2 and
B =1 (right). As previously, we observe that the deformed mesh fits well with the objective in green.
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We consider the same Laplace problem as in the example 1.1.3. In Fig. 13 we represented the solution of
the Laplace problem ¢map (left) and the relative error measured in the L>-norm between ¢, and Ij,¢map,
where I}, is the interpolation operator from X, into Xj,. As expected, this error is on the order of h2.

0.000e+00

111

0.035 0.07 i ‘CWIF (T\WT U“W? 0.21 2.500e-01

M [LLIL]] HW

0.000e+00  0,0005 0.001 0.0015 TTS 0.0035 4,136e-03

0.002 0.0025 0.
HIHHWH‘HHIWHIH‘HHHIH W

Figure 13: Left: solution ¢map; Right: relative error between ¢ and Iy ¢map-

1.2.2 Example 5: deformed (non-uniform shear) square

In this second example we still consider the deformation of the unit square [0,1] x [0,1]. The reference
domain and the associated mesh Tyer are the same as in Sec. 1.2.1. Besides, the functional F,(.) on the
boundaries I‘z and Fz is defined similarly as in Sec. 1.2.1. However, now on the boundary I‘f) the functional
is nonlinear (see Fig. 14) and defined by:

Fy(@)|r2 := fas — (1 — ) — BLsin (2771:15_ a>’

In addition to the coeflicients o and 3, the amplitude £ will also belong to the set of varying parameters p.

(©,1) I3, (1,1) (0,1) r (a+8,1)
Iy Qper et Iy Q, r
(07 O) f‘ief (1a 0) (07 O) 1_‘;1) (av 0)

Figure 14: Left: reference domain €2,.¢; Right: generic domain €,,.

Because of the nonlinearity of F},, we use a Picard fixed-point algorithm to solve problem (18) that can

be rewritten under the form .
Aot (u,v) + f(u,v) =0, Yo e,

or equivalently, defining the solution operator A by A,ct(Ag,v) = —(g,v), Yv € V; for a given g,
w=Flu),

with F(u) :== A~1F(u), and (F(u),v) = f(u,v), Yo € V.
Starting from an initial guess u®, we solved iteratively the following problem for n =1, -+, Ny ax.
Find u™ € Vj, such that
u" = F(u"!),

that is, find u™ € Vj, such that Vv € Vj,

1
/ 2ue(u™) : e(w) + Adiv (u™)div (v) dz + 2/ (2F,(Z +u" ") (VE,(Z+u" "), v))dl =0, Vve.
Qref Fref
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In Fig. 15 we show the reference mesh Tyer (left), and the deformed mesh Tyap for @ =1, 8 = 0.7, and
£ =0.1 (right). We observe that the deformed mesh fits well with the objective in green.

)
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Figure 15: Left: reference mesh 7re; Right: deformed mesh Tpap.

SN
I
anh

oo

)

A Dbetter quantification of the quality of the meshes, using quantities associated to the mesh as in
Sec. 1.1.1, is given in Table 3. These results highlight the regularity of the mesh obtained by our transfor-
mation, for a non-uniform shear square (with nonlinear F),).

Mesh | Amin h Rmean Omin Omax Omean

Tret 0.00919903 | 0.0303365 | 0.0182829 | 1.00117 | 2.07062 | 1.19964
Tmap | 0.00961286 | 0.0642076 | 0.0227618 | 1.00129 | 3.52419 | 1.31929
Th 0.00828206 | 0.0338312 | 0.0192272 | 1.00132 | 2.12118 | 1.21547

Table 3: Example 1: classical quantities associated to the meshes Tref, Tmap and Ty

In this example, we consider a Laplace problem (1) where gy is set to g¢(x) = z2(1 — z2) on I'y. In
Fig. 16 we show the solution of the Laplace problem ¢map (left) and the relative error measured in the
L>-norm between ¢, and Ij¢map. As previously, this error is on the order of h? (see Table 3), as in the

previous examples.

2.500e-01

°
=

o
@

o

mlu”mhm 1
L
S

0.075

o

05

0.025

—0.000+00

Figure 16: Left: solution ¢map; Right: relative error between ¢ and Ip¢map-

1.2.3 Example 6: deformed square into a bell

4.034e-04

-0.00036

In this third example we still consider the deformation of the unit square [0, 1] x [0, 1]. The reference domain
and the associated mesh Tref are the same as in Sec. 1.2.2. The functional F, on the boundaries F}) and
I'3ho is also defined similarly as in Sec. 1.2.2. However, now on the boundary I‘% the functional F), is defined

by:

Fp(m)h“% = T2

1

1+ acos(2mzy)’

where the coefficient « represents the set of varying parameters p (see Fig. 17).
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Find d"

Such approach may lead to inverted triangles during the process, thus we propose the following alternatives
(dnav)elas7F

for the term (d",v)c;qs which improve the method

where d" is the solution to the problem

e o(F(z + d»

J

1

with v =17,

e(v) + Adiv (d")div (v))dz,

) (2pe(d™)

17

=

K
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1 — et and k is the aspect ratio of triangles, defined by

of the circumscribed circle, and ry, is the radius of the incircle of the triangle.

(dnvv)elas,n :

, where 7, is the radius
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2%

where ¢(t)

This idea of changing the inner product whereby a gradient is identified for J(w) is quite classical in the
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In Fig. 18 we represented the reference mesh Tyo¢ (left), and the deformed meshes for o = 0.3, using
(-, Jetas,p (middle) and (., .)elqs,x (right). We observe that the mapped mesh fits well with the objective for
both cases and that the triangulation obtained with (.,.)ciqs, is more regular than the one obtained with

('7 ')elas,F‘

1.2.4 Deformation of a crescent moon

In this example, we consider a generic component in the form of a square [—1,1] x [—1,1] where a crescent
moon has been removed. The crescent moon is the intersection of the exterior of a disc of radius r; centered
in (¢,0.5) with a disc of radius ro centered in (0.5,0.5) (see Fig. 19), where the coefficients ¢, 71 and 79
represent the set of varying parameters p. In the generic domain €2,, the parameter dependent boundary
I, is made of the union of I'} and I'2, and respectively T'yer is made of the union of I'l,; and T'Z.

(0,1) L'y (1,1) (0,1) Iy (1,1)

L'y L'y Ly L'y

(0,0) T, (1,0) (0,0) T, (1,0)

Figure 19: Left: reference domain {2..; Right: generic domain €2,.

The functional that describes the boundary I', is nonlinear and as follows:

()| = (z1 — ¢)* + (x2 — 0.5)% — 72,
($)|F2 = (ZL’l — 05)2 + (IEQ — 05)2 — 7"%.

To treat the nonlinearity of F, in (18) we choose to use one of previous steepest descent algorithm with
(., )etas,x- The reference mesh Tref is a regular triangulation with 30 vertices on I'f, 20 vertices on T'L;
and 40 on I'2; associated to the reference domain for ¢ = 0.4, 7, = v/0.22 +0.12 ~ 0.22 and 7 = 0.2 . In
Fig. 20 we represented the reference mesh (left), and the deformed mesh for ¢ = 0.3, r; = 0.35 and o = 0.27

(right). We observe that the mapped mesh fits well with the objective.
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Figure 20: Left: reference mesh 7yer; Right: deformed mesh Tyap using (., .)elas, -



Component Mapping Automation for Parametric Component Reduced Basis Techniques 15

2 Recap. on the Reduced Basis Method

In this section we present the mapping used in a reduced basis method context. The implementation is then
decomposed in the following independent steps.

2.1 First step: construction of the manifold of deformations

Following one of the methods presented above, we are able to solve an elasticity problem, the solution of
which is a displacement that enables to go from €, onto the domain of interest (2, and that maps the
points of each part I'; of the boundary of Qe into (actually onto) the associated part I of Q.

We compute such elasticity solutions for a large number N of values of p hopefully representing well the
set of all problems we shall be faced to (in our case N was set to 100). The displacements are denoted as
U(p), these are defined over €,cs, the mapping from Q¢ onto Q, is Id +U(p).

Note that the restriction u™(p) = U(p) =, of U(p) on I'l; can be considered as a Dirichlet boundary
condition for an elasticity problem that maps (e onto the domain of interest §2,. In opposition to what
generally happens for those Dirichlet boundary conditions, they are not imposed a priori but are obtained
a posteriori, after the problem has been solved.

It is expected, verified in our applications — and it would be good to prove it — that the set of all
{u™(p)}, when p varies is a manifold with a small Kolmogorov n-width, which is the requirement for next

building a sensible reduced basis approach (see e.g. [9, 17]).

2.2 Second step: extraction of a reduced basis for fast approximation of the
deformations for general parameters

We extract with a POD or a greedy procedure (see e.g. [9, 17]) from this manifold {u™(p)} when p varies,

a (small) set of parameters py, pa, ..., pn, ... such that, for any given € > 0, there exists n = n(e) such that,
for any p, there exists components ay(p), a2(p), ..., a,(p) such that
J[u™( Z ai(p) w™(pi) |l (90 < € (19)

By linearity of the elasticity problem, the solution U(p) to the elasticity problem over Qe¢, with Dirichlet
n

boundary conditions u™(p) is thus close to Z a;(p)U(p;) with an error over Q¢ that is bounded by Ce
i=1
where C' is some stability constant. '

Actually, the coefficients a;(p) can be found by many ways from the knowledge of the N solutions u™(p)
that were computed, but it is also possible to get them for parameters that do not belong to the set of
parameters that have been chosen in subsection 2.1. If these chosen values indeed represent well the set
of all problems we shall be faced to, then we can propose to define, for any p the {a;(p)}i=1,...n by least
square applied to the implicit caracterization F,(.) = 0 defining the boundary of Q,. This means that

{ai(p)}i=1,..n = ar ,6}m:11n (ZBz (P2) >‘ L2(0%er) 2

Having found these values {a;(p)}i=1,.. n, an approximation of the elasticity problem that maps {yer
over (2, is thus also given by >, ai(p) U(p;).

The way we solve (19) and (20) is as follows : for (19), an EIM Greedy approach is used to identify the
u and hence the U. For (20), we used a standard matlab nonlinear least-squares solver (’lsqnonlin’). Note
that (20) produces the optimal coefficients, and is thus not a POD approach that targets to find the optimal

"™ (pi)-
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2.3 Third step: definition of the geometric factors

Once the fast and accurate approximation of the deformation u™(p) is obtained, we can easily deduce the
approximation of the Jacobian matrix J(p) and Jacobian determinant J(p) = detJ (p) that are

T(p) = ai(p)T (p:) (21)
i=1

and

which is quadratic in the a;’s.

2.4 Fourth step: computation of the inverse of the Jacobian determinant

Looking back to (8) we have to evaluate rapidly the contributions in the 2x2 matrix
T T

that appear in K (see (7)) as a quadratic expression in the displacement — and thus that can be, like the
determinant above, be written in terms of a quadratic expression in the «;’s — divided by J.

Due to this, the complexity in the « is too large and, in order to express K rapidly, we refer to a

Kii Kip > _ ( Kia(p) Kipz(p) )
= and

Ky1 Kap Kai1(p) Kap2(p) )’
each K, ,(p) can thus be expressed in terms of a linear combination of K, ,(p), for well chosen parameter
values pi, k =1, ..., Ng not necessarily coinciding with the set p; used in the definition of the displacement
reduced basis.

further set of approximation. The matrix K := K(p) = (

Our purpose is thus to express K(p) as a linear combination of K (py)

Nk
K(p)=>_ BrK(py) (23)
k=1

and this is done through the Empirical interpolation method (EIM) [2] since, thanks to the approximation
U(p) ~ Zai(p) U(pi), we can evaluate easily the gradient of U and then the value at Ny appropriate
i=1

points x. These points can and are chosen in such a way that the prescription of the equality of (23) at N
points leads to a unique definition of the coefficients . Note there are two options to approximate K (p);
we can develop an EIM approximation for each component of K (p), or we can treat the entire matrix with
a single EIM approximation. In this article we considered the first option. Note that, for a 2 x 2 matrix,
there is not much difference between the two options. Rather for a larger matrix, the first one is the only
that is viable, see [3] for implementation.

2.5 Numerical results
2.5.1 Square with a circular hole

We consider a simple 2D test case of a unit square with circular hole. The geometrical parameter are the
center and radius of the circular hole. In Fig. 21, we represented the solution of the Laplace problem (1) by
coupling the mapping method to the reduced basis method.
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Figure 21: Solution of Laplace problem
During Online Stage Time to map surface = 0.041
Time to solve RB system = 9.3e-04 | Time to solve FE system = 0.18
Max diff due to EIM = 0.037 Max diff due to RB = 0.002

Table 4: Computational times and error

The Table 4 summarize the computational times and error of the reduced basis method. Here the errors
are absolute. However, the solutions are O(1) so relative and absolute are quite similar.

2.5.2 Case of a bell

We consider a 2D test case of a bell. The geometrical parameter is « (see Fig. 17). In Fig. 22 we represented
the solution of the Laplace problem (1) by coupling the mapping method to the reduced basis method.
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Figure 22: Solution of Laplace problem

During Online Stage Time to map surface = 0.041
Time to solve RB system = 3.39e-04 | Time to solve FE system = 0.35
Max diff due to EIM = 0.005 Max diff due to RB = 7.15e-5

Table 5: Computational times and error

In Table 5, the computational times and error of the reduced basis method are shown. Here the errors
are absolute. However, the solutions are O(1) so relative and absolute are quite similar.
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