H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow up for ut ? ?u = g(u) revisited, Adv. Differential Equations, vol.1, issue.1, pp.73-90, 1996.

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, vol.10, issue.299a, pp.443-469, 1997.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.31, issue.1, pp.23-53, 2014.
DOI : 10.1016/j.anihpc.2013.02.001

L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth, Communications on Pure and Applied Mathematics, vol.41, issue.3, pp.271-29735075, 1989.
DOI : 10.1002/cpa.3160420304

L. Caffarelli and L. Silvestre, An Extension Problem Related to the Fractional Laplacian, Communications in Partial Differential Equations, vol.32, issue.8, p.35096, 2007.
DOI : 10.1080/00036818308839425

L. Caffarelli, J. Roquejoffre, and O. Savin, Nonlocal minimal surfaces, Communications on Pure and Applied Mathematics, vol.52, issue.1, pp.1111-114449057, 2010.
DOI : 10.1002/cpa.20331

URL : https://hal.archives-ouvertes.fr/hal-00629383

A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations, Communications in Partial Differential Equations, vol.330, issue.8, pp.1353-138435361, 2011.
DOI : 10.1080/03605308008820155

URL : https://hal.archives-ouvertes.fr/hal-01338485

W. Chen, C. Li, and B. Ou, Classification of solutions for an integral equation, Communications on Pure and Applied Mathematics, vol.313, issue.3, pp.330-343, 2006.
DOI : 10.1002/cpa.20116

M. Chipot, M. Chlebík, M. Fila, and I. Shafrir, Existence of Positive Solutions of a Semilinear Elliptic Equation in Rn+with a Nonlinear Boundary Condition, Journal of Mathematical Analysis and Applications, vol.223, issue.2, pp.429-47135060, 1998.
DOI : 10.1006/jmaa.1998.5958

J. Dávila, Singular solutions of semi-linear elliptic problems, Handbook of differential equations: stationary partial differential equations, Handb. Differ. Equ, vol.VI, issue.08, pp.83-176, 2008.

J. Dávila, L. Dupaigne, and A. Farina, Partial regularity of finite Morse index solutions to the Lane???Emden equation, Journal of Functional Analysis, vol.261, issue.1, pp.218-23235090, 2011.
DOI : 10.1016/j.jfa.2010.12.028

J. Dávila, L. Dupaigne, and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal, vol.7, issue.4, pp.795-817, 2008.

J. Dávila, L. Dupaigne, K. Wang, and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Advances in Mathematics, vol.258
DOI : 10.1016/j.aim.2014.02.034

L. Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall, CRC Monographs and Surveys in Pure and Applied Mathematics, vol.143, p.277946335002, 2011.

E. B. Fabes, C. E. Kenig, and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Communications in Partial Differential Equations, vol.27, issue.2, pp.77-116, 1080.
DOI : 10.1007/BF00282317

. Mouhamed-moustapha and . Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential

M. Moustapha, F. , and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations

A. Farina, R. N. , and J. Math, On the classification of solutions of the Lane???Emden equation on unbounded domains of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math>, Journal de Math??matiques Pures et Appliqu??es, vol.87, issue.5, pp.537-561, 2007.
DOI : 10.1016/j.matpur.2007.03.001

R. L. Frank, E. Lenzmann, and L. Silvestre, Uniqueness of Radial Solutions for the Fractional Laplacian, Communications on Pure and Applied Mathematics, vol.12, issue.10
DOI : 10.1080/03605308708820522

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Communications in Partial Differential Equations, vol.41, issue.8, pp.883-90135033, 1981.
DOI : 10.1080/03605308108820196

J. Harada, Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space, Calculus of Variations and Partial Differential Equations, vol.337, issue.7???9
DOI : 10.1007/s00526-013-0640-6

I. W. Herbst, Spectral theory of the operator (p 2+m 2)1/2???Ze 2/r, Communications in Mathematical Physics, vol.73, issue.3, pp.285-294, 1977.
DOI : 10.1007/BF01609852

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Archive for Rational Mechanics and Analysis, vol.49, issue.4, pp.241-269, 1972.
DOI : 10.1007/BF00250508

S. A. Mol?anov and E. Ostrovski?-i, Symmetric stable processes as traces of degenerate diffusion processes, Teor. Verojatnost. i Primenen, vol.14, pp.127-130, 1969.

P. Polá?ik, P. Quittner, and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Mathematical Journal, vol.139, issue.3, pp.555-57935131, 2007.
DOI : 10.1215/S0012-7094-07-13935-8

X. Ros-oton and J. Serra, The Pohozaev Identity for the Fractional Laplacian, Archive for Rational Mechanics and Analysis, vol.389, issue.2
DOI : 10.1007/s00205-014-0740-2

F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc, vol.87, pp.187-197, 1958.

K. Wang, Partial regularity of stable solutions to the supercritical equations and its applications , Nonlinear Anal, pp.5238-5260, 2012.

I. Departamento-de, C. Matemática, and . Universidad-de-chile, Chile E-mail address: jdavila@dim.uchile.cn LAMFA, UMR CNRS 7352 E-mail address: louis.dupaigne@math.cnrs, Casilla, vol.170, issue.80039, pp.6-7