N

N

Vectorized algorithms for regular and conforming
tessellations of d-orthotopes and their faces with
high-order orthotopes or simplicial elements

Francois Cuvelier

» To cite this version:

Francois Cuvelier. Vectorized algorithms for regular and conforming tessellations of d-orthotopes and
their faces with high-order orthotopes or simplicial elements. 2019. hal-02425250

HAL Id: hal-02425250
https://sorbonne-paris-nord.hal.science/hal-02425250

Preprint submitted on 30 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://sorbonne-paris-nord.hal.science/hal-02425250
https://hal.archives-ouvertes.fr

Vectorized algorithms for regular and
conforming tessellations of d-orthotopes and
their faces with high-order orthotopes or
simplicial elements

Frangois Cuvelier *

2019,/12/30

Abstract

In [8], vectorized algorithms are proposed to build regular and con-
forming tessellations of a d-orthotope made up by orthotopes or by sim-
plices. We extend theses results to the tessellations of a d-orthotope with
high-order elements.

Contents
I Do I ons 5
1.1 d-orthotope and d-hypercubel 6
............................... 8
|2 Tessellation with high-order d-orthotope elements| 9
[2.1 High-order d-orthotope mesh elements in RY 9
2.2 Tessellation of a cartesian grid with p-order orthotopes|. 10
2.2.1 Nodes of the tessellation|. 11
[2.2.2 Connectivity array of the tessellation|. 12
2.3 umbering of the m-faces of the unit d-hypercubel 14
2.4 m-faces tessellations with high order ortotopes] 15
241 Casem=0J. 16
242 Casem >0, 16
[2.5 Tessellation of a d-orthotope with d-orthotopes| 18
[P-6 m-Taces tessellations of a d-orthotope| 19
[3 Tessellation with high-order d-simplicial elements| 20
|3.1 High-order d-simplicial mesh elements in]Rd| 20
3. uhn’s decomposition of a d-hypercube| 23
3.3 Kuhn’s decomposition of a d-hypercube by p-order simplices| . . 25
3.4 Cartesian grid tesselation with p-order simplices| 29
3.5 m-taces tessellations of a cartesian grid with p-order simplices| . . 30

*Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS UMR 7539, 99 Avenue J-B Clé-
ment, F-93430 Villetaneuse, France, cuvelier@math.univ-paris13.fr.

[3.6 _d-orthotope tessellation with d-simplices| 32

[3.7 m-Taces tessellations of a d-orthotope with d-simplices| 33

|A Vectorized algorithmic language| 34
[A.1 Common operators and functions| 34
[A.2_Combinatorial functions 34
[B_Computational costs| 35
[B.T Tesscllation with p-order d-orthotopes| 35
BIT orderp=1........ 35

IB.1.2 orderp=2 36

IB.1.3 orderp=3, 37

IB.2 Tessellation with p-order d-simplices| 39

[B21 orderp=1f 39
B22 orderp=2 40
IB.23 orderp=3| 41

CS 5 al Tnders 42

In [7] or [8], we explain how to efficiently build regular tessellations of a
d-orthotope made up by orthotopes or by simplices and how to recover all the
meshes associated to the m-faces of the d-orthotope, 0 < m < d. In Figure
small meshes of the unit hypercube are given for both tessellations with ortho-
topes and simplices. From these two meshes, all the associated 2-faces meshes
are represented in Figure [2]

1-¢ —t 1-4
b /
p—— T | S T
0.9 | E 0.9
0.8 -| 0.8
I I
0.7 ’h—zp_‘_ —4 0.7

0.6 - 0.6
N 0.5 __%; N 054
0.3 /! 0.3
0.2 - — — 0.2 -
1 1

0.1 0.1

0.5 0.5
0-8 o4
1 . 1

o x 08 0.6 0.4 02 4 x

Figure 1: Tesselation samples of [0, 1]® with 3-orthotopes (left) and 3-simplices
(right) where vertices of all mesh elements are represented by a small black
sphere.

Figure 2: Representation of all the 2-faces meshes with 2-orthotopes (left) and
2-simplices (right) obtained from the tesselation samples of the Figure

The aim of this paper is to extend these results/algorithms to tessalations
with high order elements: p-order orthotopes or p-order simplices. Theses ele-
ments have additionnal nodes regularly distributed added to their vertices. For
dimension 1 to 3 and order 1 to 4, orthotope elements and simplicial elements are
respectively represented In Table [I| and Table [2| In [§] the only mesh elements
used are order 1.

Table 1: p-order d-orthotope mesh element in R?. Nodes are the points.

p
d 1 2 3 4
1| - o e e
3

Table 2: p order d-simplicial mesh element in R?. Nodes are the points.

By taking back the meshes represented in Figure (1] and Figure [2| but this
time using 3-order mesh element we want to get new meshes given by Figure [3]
and Figure []

o . B
¢ 40, .'- . ° :
= q >
o % e Al AR o X O
et .. '.-.‘..- 1 % A . ? “\-.
T . 4 NS % AN WG
q ‘.‘.. .'.. . s 09-1 [e Q .\\ NS
“ et
4% o
RRYAX d °, 0.8 Q N\
e 5 e < . 07— . % 2
o . A
06 o. "... .’... xRN R & .'.: P 06 - - N
2 °d . N RO e
05 4 PRI 7 Sk SEI 74 O BERENE 37 8 5+ SA\J? N N .
N0, S e S0 23 OO0 74 S0 DY 7 60 B ~O. > V4 V28 VA
1. °:’. D .",'. o, Y y .'\ f '°\ k %
04-1 o 4 %% 1% PR T S oo °l% 04 [e Q2 >
R A . S0 Q
0.3 451 c N e 0.3 0 \
. o %1 o oahe] . B \.. A NN ﬁ. .
02-e o Bt ‘)—!._.__l T -9 . 02-e o e = 2 . X
oo o® DR 7200 A Pt K] A N D Q 1
01-° = - o « % [MR 0.1 N o NN R
04 ¢« . 04
1 0.8 1 0.8

0.6 0.4 0.2 o 0 X 06 0.4 0.2 o o X

Figure 3: Tesselation samples of [0,1]® with 3-order 3-orthotopes (left) and
3-order 3-simplices (right) where nodes of all mesh elements are represented by
small black (vertices) and grey spheres.

no

Figure 4: Representation of all the 2-faces meshes with 3-order 2-orthotopes
(left) and 3-order 2-simplices (right) obtained from the tesselation samples of
the Figure [3]

In the following of the paper we will use notations and definitions given in

5.

1 Definitions and notations

In this part, we characterize the basic geometric elements that will be used
later on. Some of their properties are recalled. But before we specify notations
commonly used in this paper to define set of integers:

[i,4] = {i, - .4 [, g1 = i, 1 =1,
]]ia.ﬂ]d;f{i'i_l?"'vj}? ﬂ%][[dzef{l—’—lavj_l}

1.1 d-orthotope and d-hypercube
We first recall the definitions of a d-orthotope and a d-hypercube given in [3].

Definition 1 In geometry, a d-orthotope (also called a hyperrectangle or a
boz) is the generalization of a rectangle for higher dimensions, formally defined
as the Cartesian product of intervals.

Definition 2 A d-orthotope with all edges of the same length is a d-hypercube.

A d-orthotope with all edges of length one is a unit d-hypercube.
The hypercube [0,1]? is called the unit reference d-hypercube.

The m-orthotopes on the boundary of a d-orthotope, 0 < m < d, are called

the m-faces of the d-orthotope.

The number of m-faces of a d-orthotope is

s =27 (1) e (1) = Sy W

For example, the 2-faces of the unit 3-hypercube [0,1]? are the sets

0} > [
0,1] x
0,1] x

)

)

{

1],
1,
0}

)

0,1]
{0}
[0

— -

x [0
x [0
1] x

)

Its 1-faces are
{0} x {0} x [0,1],
{1} x {0} x [0,1],
{0} x [0,1] x {0},
{1} x [0,1] x {0},
[0,1] x {0} x {0},
[0,1] x {1} x {0},

and its 0-faces are

{0} x {0} x {0},
{03 x {1} x {0},
{1} < {1} x {0},
{0} > {1} > {1},

{1} > [0, 1] x [
[0,1] x {1} x [
[0,1] [0,1] x

{0} x {1} x [0,1],
{1} > {1} x [0,1],
{03 > [0, 1] x {1},
{1} > [0, 1] x {1},
[0, 1] x {0} x {1},
[0, 1] x {1} x {1},

{1} x {0} x {0},
{0} x {0} x {1},
{1} > {0} x {1},
{1} > {1} x {1}.

We represent in Figure [5] all the m-faces of a 3D hypercube.

7T,
#r,
o,

Py
#rg
2
*ry

Figure 5: m-faces of a 3D hypercube : 0-faces (upper left), 1-faces (upper right)
and 2-faces (bottom)

In Table [3|is given the number of m-faces for m € [0,d] and d € [0, 6].

\ \ m 0 1 2 3 4 5 6
d Names 0-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1
1| Segment 2 1
2 Square 4 4 1
3 Cube 8 12 6 1
4 | Tesseract 16 32 24 8 1
5 | Penteract 32 80 80 40 10 1
6 | Hexeract 64 192 240 160 60 12 1

Table 3: Number of m-faces of a d-hypercube

The identification /numbering of the m-faces is given in Sectio

1.2 d-simplex

Definition 3 In geometry, a simplex (plural: simplexes or simplices) is a gen-
eralization of the notion of a triangle or tetrahedron to arbitrary dimensions.
Specifically, a d-simplex is a d-dimensional polytope which is the convexr hull of
its d + 1 vertices. More formally, suppose the d + 1 points q°,...,q% € R? are
affinely independent, which means q' —q°,...,q% —q° are linearly independent.
Then, the simplex determined by them is the set of points

d
C={00q’ + - +04q"10; > 0,0<i <d,) 0; =1}
=0

For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-
simplex is a 5-cell. A single point may be considered as a 0-simplex and a line
segment may be considered as a 1-simplex. A simplex may be defined as the
smallest convex set which contain the given vertices.

Definition 4 Let q°,...,q% € R? be the d + 1 vertices of a d-simplex K and
Dx be the (d + 1)-by-(d + 1) matriz defined by

i
1
|
! !
i
!

The d-simplex K 1is
o degenerated if det Dy = 0,
e positive oriented if det D > 0,
e negative oriented if det D < 0.

The m-simplices on the boundary of a d-simplex, 0 < m < d, are called
the m-faces of the d-simplex. If a d-simplex is nondegenerate, its number of
m-faces, denoted by S, 4, is given by

vad_<d+1> @)

m+1
We give in Table [4]this number for d € [0,6] and 0 < m < d.

.l m [o [t [2 [3 | 4[5 | 6 |
d Names 0-face | 1-face | 2-face | 3-face | 4-face | 5-face | 6-face
0 Point 1

1 Segment 2 1

2 triangle 3 3 1

3 | tetrahedron 4 6 1

4 | 4-simplex 5 10 10 5 1

5| b-simplex 6 15 20 15 6 1

6 | 6-simplex 7 21 35 35 21 7 1

Table 4: Number of m-faces of a nondegenerate d-simplex

2 Tessellation with high-order d-orthotope ele-
ments

2.1 High-order d-orthotope mesh elements in R?

The reference element of the p-order d-orthotope mesh element in R is H=
[0, 1] Tts (p + 1)¢ nodes are

i =2 vie[o,p] 3)
p
and they contains the 2% vertices of i
o =]33, Vi € {0, p}. (4)

Let q be the d-by-(p+ 1) array containing all the nodes of fl. To choose the
storage order of the nodes in the q array we define the £, function that maps
all the d-tuples 2 € [0, p]¢ into [1, (p + 1)] by

d
L) =1+ (p+1) . (5)
=1
Then the q is given by
(. 4) =2t 0, vie 1, (p+1)7. (6)

where q(:, j) denotes the j-th column of the array q.
For example, with d = 3 and p = 2, the array q is given by

st 1 012012012012©012%012¢012°¢01720
q:e* 0001112220001 11222¢0001171?2
2 ooo0oo0o000600O0O11111111122272222

This array can be obtained from the CarresiaNGriDPoINTs function, described
in [8], by using

q < (1/p) * CARTESIANGRIDPOINTS(p * ONES(1, d))

In Figure [f] and Figure [7] nodes numbering is represented respectively for the
2-orthotope and 3-orthotope reference elements of order 2 and 3.

N DN =

NN DN

o] gl m § g
0.9 0.9
0.8 0.8
o7} os| @ 1]
. .
0.6 0.6
g
- -
0.5¢ . 0.5
0.4 0.4 E E
. .
03F 0.3
0.2 0.2
0.1fF 0.1
a
o N
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6: Nodes numbering of the unit 2-orthotope element in R?: order 2
(left) and order 3 (right)

Figure 7: Nodes numbering of the unit 3-orthotope element in R3: order 2
(left) and order 3 (right)

2.2 Tessellation of a cartesian grid with p-order orthotopes

Let N = (Ny,...,Ng) € (N*)4. The cartesian grid of [0, N1]] x - -+ x [0, N4] can
be tessellated with p-order unit d-orthotopes which vertices are integer lattices.
We denote by Q, n this tessellation of [0, N1] x --- x [0, Ng] composed of ng
node points and nye p-order unit d-orthotopes where

d

d
Ny = H(le +1) and npe = an. (7)
= =1

i

The objective of this section is to describe the construction of the nodes
array q and the connectivity array me associated with Q,n. More precisely,

10

e q(v,j) is the v-th coordinate of the j-th node, v € [1,d], j € [1,nq]. The
j-th node will be also denoted by q/ = q(:, j).

e me(3,1) is the storage index of the S-th node of the I-th element (unit
hypercube), in the array ¢, for 8 € [1,(p +1)?] and I € [1,nme]. So q(:
,me(3,1)) represents the coordinates of the S-th node in the I-th cartesian
grid element.

2.2.1 Nodes of the tessellation

Each node of the Q,, n tessellation may be identified by a d-tuple 3 = (j1, j2,- -+ , ja) €
[0,pN1] x - -+ x [0,pNy] and the corresponding node denoted by ¢’ is given by

2 .

Qi N |
-]1a]27"' 7.]d) = - (8)
p p
where {e[l], e ,e[d]} denotes the standard basis of R?.

We want to store all the nodes of Q, N in a 2D-array q of size d-by-nq. To
define an order of storage in the array q, we will use the mapping function G,
given by

d
Go@) =1+ 0B =1+0.B8), VY3€[0,pNi] x - x [0,pNg] (9)

where B = (BY,...,8}) € N? with
-1
B =[N +1), vie1,d. (10)
j=1

To build the B8P array one can use the CGBEeTaA function defined in Algorithm

BP — CGBETA(p * N)

Algorithm 1 Function CGBeTa : Computes 5, Vi € [1,d], defined in
Input :
N : array of d integers, N (i) = N;.

Output :
B : array of d integers such that 8(I) = 5, defined in

Function 8 «— CGsera (N)
B(1) <1
for | — 2 to d do
Bl) —B(l—-1)x (N(I—-1)+1)
end for
end Function

The G, function maps the tuple set [0,pNi] x --- x [0,pNg] to the global
nodes index set [1,ny]. From this function, we define the nodes array q as

a(,G,(0) = ¢ =]% Vg€ [0,kN1] x -+ x [0, kNg] (11)

11

This array can be obtained from the CarreEsiaNGRriDPoINTS function, de-
scribed in [§], by using

q < (1/p) = CARTESIANGRIDPOINTS(p * N)

From the array q defined in (L1)), we can now construct the tessellation of the
cartesian grid @, N with unit d-hypercubes.

2.2.2 Connectivity array of the tessellation

The Q,n tessellation contains 7nye unit p-order d-orthotopes. They can be
uniquely identified by their node of minimal coordinates. Let 2 € [0, N1[x - -+ x
[0, N4[. We denote by H} the unit p-order hypercube defined by its 2¢ vertices:

g"**?), wpe [0,1]".
So all the nodes of HY are given by:
¢**e, s e [0,p]".

We want to build the connectivity array me of dimensions (p + 1)%-by-nmye
such that me(l,r) is the index in array q of the I-th node of the r-th p-order
hypercube : this node is q(:,me(l,)).

To define an order of storage of the hypercubes in the array me, we will use
the function H defined by

-1

d
He) =1+ > i [[N 1€ [0,Ni[x--- x [0,Ng] (12)
=1 j=1

This bijective function maps the multi-index set Zy = [0, N1[x - -+ x [0, Ng[to
the set [1, nme] such that r = H(2).

The inverse function H™! can easily be built. Indeed, if we define the d-by-
Nme array In by

IN < CARTESIANGRIDPOINTS(N — 1).
then by construction we have
H(r) = In(yr), V€ [nme]

Let r € [1,7me] and 2 = H*(r). The r-th p-order hypercube is H, and ¢** is its
vertex of minimal coordinates. By construction of nodes array q we have

4" =q(:,G,(m))

From the 1-by-d array B? defined in , we have G,(pe) = 1 + {(pe, B7). Using
matricial operations we can define the 1-by-nny,. array iBase by

iBase < 87 x Hinv + 1
such that
Gp(m) = G, o H™'(r) = iBase(r). (13)

12

Let 2 € [0, N1[x - -+ x [0, N4[and p = H(z). We choose vertices local num-
bering in the r-th hypercube to be identical with that described in section
That is why we take

q(:,me(l,r)) = ¢" +§(:, 1) = g"+AGD
where q is defined by (6). So we obtain
we(l,7) = G,(p(e +4(:,1)")) (14)

From definition of G, we have

me(l,r) =1+ {p@+4q(:1)%),B")
=1+, B7) + (pa(:, 1), (B)")
= Gy(pe) + (BP)" * p4(:, 1)

Thereafter, using gives Yl e [1, (p + 1)¢]
me(l,r) = iBase(r) + B = (pq(:,1)), V7 € [1, nme]
or in a partially vectorized form
me(l,:) < iBase + (87)" * (pq(:,1)).
We can now give a full vectorized form:
me «— RepTiLe(iBase, (p + 1)¢, 1) + RePTiLE(TrANSPOSE(B * (pQ)), 1, ime)

So we can easily write the function CGTrssHyp in Algorithm [2] which computes
the q and me arrays.

Algorithm 2 Function CGTessHyp : computes the nodes array q and the
connectivity array me obtained from a tesselation of the p-order cartesian grid
Qp N with unit p-order hypercube.

Input
N : array of d integers, N (i) = N;.
p : positive integer.
Output
q : nodes array of d-by-n, integers.
me : connectivity array of (p + 1)%by-ny. integers. me(l,r) is the

index in the nodes array q of the I-th node of the r-th hypercube : this
node is q(:,me(l,)).

Function [q,me] « CGTessHyr (N, p)
q < CarTESIANGRIDPOINTS(p * N) /p

Hinv «— CarreEsSIANGRIDPOINTS(N — 1) > d-by-nme array
pq < CARTESIANGRIDPOINTS(p * ONES(1, d)) > d-by-(p + 1) array
B — CGeeTA(p * N) > 1-by-d array

iBase <— 8 = Hinv + 1
me < RepTiLe(iBase, (p + 1)¢, 1) + RepTiLE(TRANSPOSE(B * pq), 1, Time)
end Function

13

2.3 Numbering of the m-faces of the unit d-hypercube

Let m € [0, d]. As introduced in section [l the m-faces of the unit d-hypercube
[0,1]¢ are unit m-hypercubes in R¢ defined by the product of d intervals where
d—m intervals are reduced to the singleton {0} or {1} (called reduced dimension)

We have n. = (s;) possible choices to select the index of the d —m reduced

dimensions (combination of d elements taken d — m at a time) and for each
selected dimension 2 choices : {0} or {1}.
So if [€ [1,d] is the index of a reduced dimension then vertices z*(= 1 =
(41,...,1q)) is such that 4; = 0 (minimum value) or 4; = 1 (maximum value).
Let LI%™] be the n.-by-(d — m) array given by

Lldm] Cowmss([1,d],d —m).

Then each row of LI%™] contains the index of the d — m reduced dimensions
of an m-face sorted by lexicographical order (see Comss function description in

Appendix
Let Sl4=™1 be the (

sli=ml CarresianGriDPoNTs(ONES(1,d — m)).

d — m)-by-29=™ array given by

This array contains all the possible choices of the constants for the d—m reduced
dimensions (2 choices per dimension) : values are 0 for constant minimal value
or 1 for maximal value.

Definition 5 Let [€ [1,n.], r € [1,297™] and k = 29=™(1 — 1) + 7. The k-th
m-faces of the unit reference d-hypercube is defined by

{.’z: € [0,1]¢ such that z(LI4™ (1, s)) = Sl4=m)(s,), Vs e [1,d — mﬂ}
or in a vectorized form
{:1: € [0,1]% such that z(LI4™(1,2)) = s[d—ml(;m)} (15)

For example, to obtain the ordered 2-faces of the unit 3-hypercube we com-
pute

1
LB2 = 2| and sM=(0 1)
3

and then we have

2-face number Set

1 x € [0,1]3 such that z; = 0

2 gx € [0,1]3 such that x; =1

3 {z € [0,1]® such that 2o = 0}

4 z € [0,1]3 such that x5 =

5 z €[0,1]3 such that x3 =

6 z € [0,1]3 such that x5 = 1

To obtain the ordered 1-faces of the unit 3-hypercube we compute
1 2
LB =1 3] and SP = <0 L0 1)

9 3 0 0 1 1

14

and then we have

1-face number

Set

—_ =
m e © 010 Utk W
8
m
e e e e e e e e

—
[\

AmAm
8 8
m m

such that z; =
such that z; =
such that z; =

such that z;
such that z;
such that z;

such that z; =

such that z;
such that x5
such that x5

such that xzy =
such that zo =

T2
€2
€2
T2
T3
T3
T3
r3
r3
T3
T3
T3

Il
_ —_— OO R P OOKKFEOO
S e e e S St S e e S atn

To obtain the ordered O-faces of the unit 3-hypercube we compute

01 01 01 01
LB =1 2 3) and SBI={0 0 1 1 0 0 1 1
00 0 0 1 1 11
and then we have
1-face number Set
1 {.’L‘ € [0,1]? such that z; =0, 22 =0, x3 = 0}
2 {.'1: € [0,1]? such that z; = 1, 22 =0, x3 = 0}
3 z € [0,1]% such that 21 =0, 2o =1, 23 =0
4 z€[0,1]% such that 77 =1, 25 =1, 23 =0
5 z €[0,1]3 such that 71 =0, 29 =0, 23 =1
6 {z €[0,1]% such that 2y =1, z =0, z3 =1
7 {z €[0,1]? such that zy =0, xp =1, z3 = 1}
8 {a: € [0,1]® such that 1 = 1, 29 = 1, 23 = 1}

2.4 m-faces tessellations with high order ortotopes

In section 2:2.2] and especially in Algorithm [2] we have seen how to build the
nodes array q and the connectivity array me of 9, N, the tessellation of cartesian
grid with unit p-order d-orthotopes. So as not to confuse notations, we denote
by O, n.q and Q, n.me respectively these nodes and connectivity arrays of Qp n.

Let m € [0,d] and k € [1, By, 4] We want to determine Q7'\(k) the tes-
sellation obtained from the restriction of tessellation Q,n to its k-th m-face
where the numbering of the m-faces is specified in section So the Q7' (k)

tessellation is made with unit p-order m-orthotopes in R?. We denote by

e O7y(k).q, the (local) vertex array

e O7'y(k).me, the (local) connectivity array

e O7'y(k).toGlobal, the global indices such that

oy (k).q = On.q(:, Q' (k).toGlobal).

15

By construction, QZN(k) is the tessellation of an m-hypercube in R¢ with unit
m-hypercubes.

Let l e [1,n.], r € [1,2¢7™] and k = 29~ (I—1)+7. The cartesian grid point
z = (21,...,2q4) is on the k-th m-face Q'y (k) if and only if for all s € [1,d —m]
and with j = LI%™(1, s) we have

v 0 if Sld=ml(s,) == 0, (minimum value)
77 | N otherwise (Sl ™I(s,7) == 1), (maximum value)

So we obtain
x; = Nj x Sl (s 7)

or, in a vectorized form using element-wise multiplication operator .*:

(L (1) = N, 2)) e SII (), (16)

Definition 6 Let [e [1,n.], r € [1,297™] and k = 297 (1 — 1) + r. Then, the
k-th m-faces of Qp N is defined as the set

{2 € Qun such that (L)1, 5)) = N(LE(1,)) e SE=m) ()} (1)

2.4.1 Case m=0.

If m = 0, the m-faces are the 2¢ corner points of the cartesian grid. Then we
have L% 0] = [1,d] and Sl¥ is an d-by-2¢ array.
From (17), we obtain that Vk € [1, (2] the k-th O-face of Q, is reduced to
the point
xz =N .S, k)t

and it is also the k-th column of the array @ of dimensions d-by-2¢ given by

Ny 0 O
Q<_ 0 N2 : S[d]
0 0 Ng

So we obtain
Q;O;,N(k)q = Q(:v k)
Q?)’N(lf)me =1
Q) n(k).toGlobal = B = (p = Q(:,k)) + 1
where 8 is given by .

2.4.2 Casem >0

Let l € [1,n.], 7€ [1,2¢7] and k = 2¢=™(] — 1) + r. To construct Q'n(k) we
first set a tessellation without the m constant dimensions given in 1dc =L(l,:)
(i.e. only with nonconstant dimensions in idne = [1, d]\ide):

[q¥, me"] « CGTessHvr (N (idnc), p)

16

The dimension of the array q% is m—by—né1 where nf1 = H (pN; +1). Then the

i€idnc
nonconstant rows are

QZN(k)Q(ldnC(Z), :) N qw (ia :)a Vie [[la mﬂ
and the constants rows
Q' (k).qlide(i), :) < p = N(ide(i)) * SI*=™ (i, 7) » Ones(1,nl), Vie[l,d—m]
In a vectorized way, we have
Oy (k) qlidne. :) < q*
v(k).alide,:) < (N(ide)” xS, 7)) + Ones(1, nl)

We immediately have the connectivity array
N (k). me = me”.

There still remains to compute Q7 (k).toGlobal. For that we use the map-
ping function G, defined in section and more particularly (9). Indeed, for
all j e [1, nﬁl]}, we can identify the point Q' (k).a(:,) by the d-tuple 2 and use
it with the mapping function G, to obtain the index in array Q, n.q of the point

o (k).a(:, 7). So we have

§=q&quﬁ=%ng%m)
and then
;’jN(k:).toGlobal(j) =G, (pQ;’jN(k).q(:,j)).

In a vectorized way, we set
N (K).toGlobal « 1+ pB * Q' (k).q

with the vector B defined in .
One can also compute the connectivity array of Q7'(k) associated with
global vertices array Q,n.q which is given by Q7'y(k).toGlobal(me™).
We give in Algorithm [3] the function CGTrssHypFaces which computes
(k) Yk e [1,297mn,].

17

Algorithm 3 Function CGTessHypPFaces : computes all m-faces tessellations
of the cartesian grid Q, N with unit p-order m-hypercubes.

Input :
N : 1-by-d array of integers, N (i) = N;
m : integer, 0 < m < d,
p : positive integer.
Output :
Q;?N : array of tessellations of all m-faces of the cartesian grid 9, n.
: d—m d
Its length is Ey, g = 2 (m) .

Function Q7'y « CGTessHyrFaces (N, m,p)
B — CGeETA(p * N)
if m == 0 then
Q «— D1aG(N) = CarresiaANGRrIDPOINTS(ONES(1, d))
for k < 1 to 2¢ do
;Z,LN(k)’q —Q(:, k)
Oy (k).me — 1
TN (k).toGlobal < 1+ B+ Q(:, k)

end for
else
d
Ne «—
m

L — Cowmss([1,d],d —m)
S « CARTESIANGRIDPOINTS(ONES(1, d — m))
k<1
for [— 1 to n. do
ide < L(,:)
idnc « [[1,d]\ide
[q*,me"] « CGTessHyr(N (idnc), p)
nl — TT,., (N (idnc(s)) + 1) > or length of q¥
for r < 1 to 297 do
m (k) qlidne, ;) < q*
" (k).q(ide, ;) — (N(ide)” .# S(:, 7)) * Ones(1,nl,)
Q)'n (k). me < me"
Q,'n(k).toGlobal « 1+ pB = Q7' (k).q
ke—k+1
end for
end for
end if
end Function

2.5 Tessellation of a d-orthotope with d-orthotopes

Let O4 be the d-orthotope [a1,b1] X - - - X [ag, bs]. To obtain a regular tesselation
of this orthotope with p-order orthotopes one can use an affine transformation
of the p-order cartesian grid Q,n = [0, N1] x --- x [0, Ng] to O4. Let @ =
(ai,...,aq) and b = (by,...,bq) be two vectors of R%. Let N « [Ny,..., Ny].
The tessellation with p-order orthotope of the cartesian grid @, n is obtained

18

by
[q,me] — CGTessHyr(N,p)

To obtain the tessellation of the orthotope O4 we only have to apply the affine
transformation:

q(i,:) < a(i) + ((b(i) —a(i))/N(i)) *q(i,:), Vie[l,d].

This operation is done by the function BoxMaprpriNG given in Algorithm [

Algorithm 4 Function BoxMappPING : mapping points of the cartesian grid
9, N to the d-orthotope [a1,b1] x - -+ X [aq, ba]

Input
N . array of d integers, N (i) = N,.
q ¢ d-by-nq array of integer obtained from
[q,me] < CGTessHyP(N,p)
a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;
Output
q : vertices array of d-by-nq reals.

Function q < BoxMarpriNG (q,a,b,N)
for i — 1 to d do
ali.) < ali) + ((b(i) — a(i))/N () *a(i,)
end for
end Function

The function OrraTessOrTH , which returns the arrays q and me corre-
sponding to the regular tessellation of Oy with p-order d-orthotopes, is presented
in Algorithm

Algorithm 5 Function OrRTHTESSORTH : d-orthotope regular tessellation with
p-order orthotopes

Input
a,b : arrays of d reals, a(i) = a;, b(i) = b; with a; < b;,
N : array of d integers, N (i) = N,
P . order, positive integer.
Output
q : array of d-by-nq reals, ng = H?=1(pNi +1).
me : array of 2d—by—nme integers, Nme = H?zl N;..

Function [q,me| <« OrruTESsOrTH (a@,b, N, p)
[q,me] — CGTrssHyP(N,p)
q < BoxMarrinG(q, a,b)

end Function

2.6 m-faces tessellations of a d-orthotope

As seen in section [2:5] we only have to apply the function BoxMarrING to each
array Q;”N (k).q of the tessellations of the m-faces of the cartesian grid Q,n.
This is the object of the function OrruTEssFaces given in Algorithm [6]

19

Algorithm 6 Function OrraTEsSSFACES : computes the conforming tessella-
tions with p-order orthotopes of all the m-faces of the d-orthotope [a1,b1] x
- % [ag, bal

Input
a,b : arrays of d reals, a(i) = a;, b(i) = b;,
N : array of d integers, N (i) = Ny,
m : integer, 0 < m < d,
P . order, positive integer.
Output
sOp : array of the tessellations of each m-faces of the orthotope.
o : _ 9d—m d
Its length is Fyp, g = 2 <m) .

Function sOp, «— OrruTEssFaces (a,b, N, m,p)
sOp < CGTrssHyPFaces(N,m,p)
for k — 1 to LEN(sOp) do
sOp(k).q < BoxMaprpPING(sOp(k).q,a,b,N)
end for
end Function

3 Tessellation with high-order d-simplicial elements

The goal of this section is to obtain a conforming triangulation or tessellation
of a d-orthotope named Oy with d-simplices.

The basic principle selected here is to start from a tesselation of a cartesian
grid with unit hypercubes as obtained in section ??. Then by using the Kuhn’s
decomposition of an hypercube in simplices, we build in section 77 a tesselation
of a cartesian grid with simplices and we explain how to obtain all its m-faces
in section Finally, ...

3.1 High-order d-simplicial mesh elements in R?

The reference element of the p-order d-simplicial mesh element in RY is the
simplex K with vertices denoted by {@, ... ,ﬁd} and such that

@’ =(0,...,0), and @ =ell, vje[1,q]

where {e[l], e ,e[d]} denotes the standard basis of R?.
Let A, be the subset of multi-index in IN¢ defined by

A, ={aeN*: |a| <p} (18)
From Lemma [T] of Appendix [C] The cardinality of A, denoted by N, is

(d+p)!

Np = Cayp = dlp!

The N, regular nodes of the reference element K are

% = g, Va e A, (19)
b

20

and they contains the d + 1 vertices of K

d
% = %7 Va € {0,p}? such that Z a; < p. (20)
j=1

In Figure [6] and Figure [7} nodes numbering is represented respectively for
the 2-simplicial and 3-simplicial reference elements of order 2 and 3.

2-simplex ref. element, order 1 Al 2-simplex ref. element, order 2

i 2-simplex ref. element, order 3

Figure 8: Nodes numbering of the unit 2-simplicial element in R?: order 1 (top
left), order 2 (top right), order 3 (bottom left) and order 4 (bottom right)

21

Z-E'Mplex ref. element, order 1 3plex ref. element, order 2

Figure 9: Nodes numbering of the unit 3-simplicial element in R?: order 1 (top
left), order 2 (top right), order 3 (bottom left) and order 4 (bottom right)

In Algorithm [7 the NopesSiMRer function returns nodes of the reference
p-order d-simplex in R¢ with nodes numbering described by Figures |8 and @
They are obtained by selecting the nodes of the reference p-order d-orthotope
H (see section which are in the reference simplex K.

Algorithm 7 Function NopesSIMREF : returns nodes of the reference p-order
d-simplex in R<.

Input
d : space dimension, positive integer
p : order, positive integer
Output
q : vertices array of d-by-nq reals with nq = (ﬁ;’!)!

Function q < NopesSIMREF (d, p)
q < CaARTESIANGRIDPOINTS(p * ONES(1, d))
I — Fino(Sum(qg,1) < p)
q <« Q(I, I)/p

end Function

22

3.2 Kuhn’s decomposition of a d-hypercube

Kuhn'’s subdivision (see [2], 10} [I1]) is a good way to divide a d-hypercube into
d-simplices (d = 2). We recall that a d-simplex is made of (d + 1) vertices.

Definition 7 Let H = [0,1]¢ be the unit d-hypercube in R, Let eV, ... el® be
the standard unit basis vectors of R* and denote by Sy the permutation group
of [1,d]. For all e Sy, the simplex K, has for vertices {a:;ro], e ,xE:”} defined
by

% = (0,...,0), bl =201 4 el"D] vje[1,4]. (21)

The set IC(ﬁ) defined by
K(H) = {Kx | 7 € Sa} (22)
is called the Kuhn’s subdivision of H and its cardinality is d!.

For example, we give in Figure [10| the Kuhn’subdivision of an d-hypercube
with d = 2 and d = 3. We choose the positive orientation for all the d
simplices. The corresponding vertex array q and the connectivity array me are
given by (préciser comment me est ordonné):

o for d =2,
as (D00 1) men (5 2
0011 -
e for d = 3,
01010101 1881138
5353 2 2
a=(0 011001 1| me=
00001111 T 6464
8 118 8 1
B 4
n B

Figure 10: Kuhn’s subdivision

23

Let Ko be the base simplex or reference simplexr with vertices denoted by
{zl9 ... 2[4} and such that

2l = (0,...,0), 2l =2l L bl vje[1,4d]. (23)

Let 7 € S,, and 7(z) indicate the application of permutation 7 to the coordinates
of vertex . The vertices of the simplex K defined in can be derived from
the reference simplex K. by

zUl = 72l vjeo,d]. (24)

Let m(Ker) denote the application of permutation to each vertex of Kyef. Then
we have
T(Kret) = Kr (25)

Lemma 8 (|2], Lemma 4.1) The Kuhn’s subdivision IC(fI) of the unit d-
hypercube H has the following properties:

1. 0% and 1% are common vertices of all elements K, € K(ﬁ)
2. K(H) is a consistent/conforming triangulation of H.

3. K(ﬁ) is compatible with translation, i.e., for each vector v € [0,1]¢ the
union of K(H) and K(v + H) is a consistent/conforming triangulation of
the set Hu (v + H).

4. For any affine transformation F, the Kuhn’s triangulation of]-'(ﬁ) 1s
defined by K(F(H)) £ F(KK(H)).

To explicitly obtain a Kuhn’s triangulation K(H) of the unit d-hypercube H
we must build the connectivity array, denoted by me, associated with the vertex
array q. The dimension of the array me is (d + 1)-by-d!.

Let g™ be the d-by-(d+ 1) array of vertex coordinates of reference d-simplex
Kref .

01 1

o = | gt g =] O
I I I o . . :
- | 010 ... 0 1

Let P be the d-by-d! array of all permutations of the set [1,d] and 7 = P(:, k)
the k-th permutation. The array P is obtained by using the function PErwms
defined in Appendix We use and to build the vertices of K. So
the j-th vertex of K is given by

g~ — g I(P(;, k), j)
To find which column in array q corresponds to :I:ETJ U e use the mapping
function £ defined in (??) and we set

20

me(j, k) < L(q" (P(:, k). j)) = < Q" (P, k),j))> +1

2d.—1

24

If the k-th d-simplex has a negative orientation, one can permute the index
of the first and the last points to obtain a positive orientation:

me(l, k) < me(d + 1, k).

In Algorithm 8] we give the function KuaNTriaNGULATION which returns the
points array q and the connectivity array me where all the d-simplices have a
positive orientation.

Algorithm 8 Kuhn’s triangulation of the unit d-hypercube [0, 1]¢ with d! sim-
plices (positive orientation)

Input
d : space dimension
Output
q . vertices array of d-by-2? integers.
me : connectivity array of (d + 1)-by-d! integers

1: Function [q,me| « KuunTrr (d)
2: q < CarresiaNGriDPoiNTs(ONEs(1, d))

0:11
ref 1 0

33 Q' ! > a d-by-(d + 1) array
010 ... 0 1

4: P <« perms(1: d) > see Appendix

5. me < Ogy1.a41

6 @< [20,21,..., 202 2d-1]

7. for k<1 tod! do

8 for j—1 tod+1do

9 me(j, k) < Dor(a,q"* (P(:, k), 7)) + 1

10: end for

11: if Der([q(:,me(:,k)); Ones(1,d + 1)]) < 0 then

12: t — me(l,k), me(1,k) — me(d + 1,k), me(d + 1,k) « ¢

13: end if

14: end for
15: end Function

3.3 Kuhn’s decomposition of a d-hypercube by p-order
simplices

We just sawn in section [3.2]the Kuhn’s decomposition of the unit d-hypercube by
1-order simplices. To obtain the same decomposition with p-order simplices, p >
1, we must build a node array q and a connectivity array me with respectively
dimensions d-by-(p + 1)¢ and Cy, ,-by-d!.

In Figures[II]and[12] the Kuhn’s decomposition of the unit d-hypercube with
2-order simplices and 3-order simplices is represented respectively in dimension
2 and 3.

25

Kuhn : d=2, order=2 acomposition : d=2, ordar=
—f ! ition i 3 ‘ | Kuhn dacomposition : d=2, odgr=3 ‘ i
oo} p 09
08 08
07 oql @
.
osf g 06
N [L
0s¢ 05
oaf g oaf g
.
o3| b 03
o2} g 02 -
0.1 0.1 1
a hﬂ
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
M X

Figure 11: Kuhn’s decomposition of the unit square by 2-order simplices (left)
and 3-order simplices (right). The first element in the decomposition is colored.

’E Kuhn decomposition : d=3, order=2 Kuhn decomposition : d=3, order=3

24 56

Figure 12: Kuhn’s decomposition of the unit cube by 2-order simplices (left)
and 3-order simplices (right). The first element in the decomposition is colored.

For example, with d = 3 and p = 2 (i.e. Figure[12] left graphic), the nodes
array is

st 1 0120120112901 2012%012¢012°50172¢012
q:e* 0oo00111222000111222¢000111222
2 ooo0o00000O0O0O1111111112222272222

26

and the connectivity array is

27 1 1 27 27 17
15 2 4 23 17 10
3 3 7 19 7 19
18 11 5 24 26 13
wf | 612 8 20 16 22
“ 19 21 9 21 25 25

—_
=~

14 14 14 14 14
15 17 10 4 23
24 18 11 13 26
2T 2vr 1 1 27

= Ot N

The nodes array is the one from the p-order d-orthotope mesh element given
by @ in section and can be obtained from the CARTESIANGRIDPOINTS
function, by using

q — (1/p) = CARTESIANGRIDPOINTS(p * ONES(1, d))

For building the connectivity array me one needs to define the mapping
function from the unit reference d-simplex to a d-simplex. Let K be the unit
reference d-simplex with vertices denoted by {(’io, e ,ad} defined in section
Let K < R? be a non-degenerate d-simplex and and {ql"1}%_; its vertices. The
affine map/transformation Fx from the unit reference d-simplex K < R to
K < R% is given by

q=Axd +q" = Fx(@). (26)

where Ag € My 4(R) is defined by
b
Ax = gl —q® ... ql9—ql (27)
| |

To build this function we only have to know the vertices of the K simplex.
From the KunnTRrr function, we build the vertices array q* and the associ-
ated connectivity array mek:

[q**, me**] — KunnTri(d).

Thereafter, for each I-th simplex of the Kuhn’s decomposition, [€ [1,d!], we
can build its vertices array

Q qkt(:amekt(:v l))

and then the matrix of the mapping function from K to the I-th simplex is given
by:
A—Q(,2:d+1)— RerTie(Q(:,1),1,d).

From the NopesSiMRer function given in Algorithm [7] we obtain nodes of
the reference p-order d-simplex in R¢:

re

q"*' — NobesSimRer(d, p).

27

So, by using mapping function , we obtain p-order nodes of the I-th simplex:
q! —Axq™ +Q(: 1)

Now to build the (p-order) connectivity array me, we must obtain their indices
in the (p-order) nodes array q. From , we deduce that the multi-indices
associated with nodes array are

inod «— p = q"°d.

Then, from , the index me(j,1) of the j-th nodes of the [-th simplex in q
array is

d
me(j,1) < Lp(inod(:,j)) = 1+ > (p+ 1)* 'inod(s, j).
s=1
Let B € N such that B, = (p + 1)*~! for all s in [1,d]. By using the CGBETA
function given in Algorithm [I] we obtain the 1-by-d array
B — CGeETa(p * OnNES(1, d))

Then we have
me(j,1) < 1+ Dor(B,inod(:, j)).

Finally, using matricial product gives
me(:,l) — 1+ B =inod

A complete function is given in Algorithm [9}

Algorithm 9 Kuhn’s triangulation of the unit d-hypercube [0,1]? with d! p-
order simplices (positive orientation)

Input
d : space dimension, positive integer
p : order, positive integer
Output
q . vertices array of d-by-(p + 1) integers.
me : connectivity array of C, -by-d! integers

1: Function [q,me] « KuuNTRIORDER (d,p)

2. [q*', me*'] « KuunTri(d)

3: if p==1then

4: q < q<*, me — me**, return

5. end if

6: g < CaARTESIANGRIDPOINTS(p * ONES(1,d))/p
7. @ < NopesSiMREFR(d, p)

8 B <« CGaEta(p * OnNES(1,d))

9: forl<—1 tod! do

10: Q « g**(:, me**(:, 1))

11: A—Q(:,2:d+1)—RerTiLE(Q(:;,1),1,d)
12: qd — Asxqf +Q(:,1)

13: me(:,l) <« 1+ B (p=q=°d)

14: end for
15: end Function

28

From this tesselation of the unit reference d-hypercube, we will see how to
get a regular tessellation of a cartesian grid with p-order simplices.

3.4 Cartesian grid tesselation with p-order simplices

Let Q,n be the d-dimensional cartesian grid tessellated with p-order unit d-
orthotopes and defined in section As before, so as not to confuse notations,
we denote by 9, n.q and O, n.me respectively the nodes and connectivity arrays

of the cartesian grid Q, n. There are Nj = H;'1=1 N; unit hypercubes in this
tessellation.

Let Z = [0, N1[x ...x[0, Ngq[. By using the CARTESIANGRIDPOINTS function,
one can build the d-by-N;, array:

Z <« CarresIaANGRIDPOINTS()N — 1).

We have
on = JM

1€l

where H, is the unit hypercube with z* =2 vertex of minimal coordinates.
From Lemma [§] the triangulation

7;7N = U K(H,)

1€

is a conforming triangulation of O, n with nye = d! x Nj, d-simplices and by
construction the nodes of 7, n are the nodes of 9, n:

TpN4d = 9pNQ.

It thus remains to calculate the connectivity array me of 7,n also denoted
by 7T, ~.me. This is a C? +p~DY-Nime array. For a given hypercube H, we store
consecutively in the array me, the d! simplices given by K(H,)

The Kuhn’s triangulation with p-order simplices for the reference hypercube
[0,1]? can be obtained from the function KUHNTRIANGULATION :

[ax,mey] < KUHNTRIORDER(d, p)

Let 2 € Z and r = H(2) where # is defined by (12). Let I € [1,d!] and
k =dl(r — 1) + 1. We choose to store the I-th simplex of K(H,) in me(:, k).

Let j € [1,C7, . The j-th nodes of the I-th p-order simplex of KC(H,) is
stored in q(:,me(j, k)) and its coordinates are given by

' + gy (-, mex (7, 1)) = 2 + q (, mex (3, 1))
So we want to determine the index me(j, k). From (9], we obtain

me(j, k) = G, (p(2 + i (:, mex (4,1))))
=1+ {B,p(r +qy(:,;mex(j4,1))))
=1+p{B,2) +pB,a,(:.me(5,1)))

where 8 is defined in and can be computed as a 1-by-d array by

B < CGaETA(p * N).

29

Let iBase be the 1-by-N}, array given by
iBase — 1 + p{B, CarTESIANGRIDPOINTS(N — 1)) .
Then the array me is given Vi € [1,d!], Vj € [1,d + 1], Vr € [1, N;], by
me(j, d!(r — 1) + 1) — iBase(r) + p{B,qx(:, mex(j,1)))-
This formula can be vectorized in r: with Idx < d![0 : N, — 1] + 1 then
me(j, Idx) — iBase + p (B, q, (-, me,. (7, 1)) .

We give in Algorithm 7?7 the function CGTriancuLATION which computes the
triangulation of the cartesian grid 9, N.

Algorithm 10 Function CGTErssSim : computes the tessellation of the carte-
sian grid Q, n with p-order simplices

Input
N : array of d positive integers, N (i) = N;.
p : order, positive integer.
Output
q : nodes array of the triangulation of Q, N.
d-by-nq array of reals (integer in fact) where ng = ngl(pNi +1).
me : connectivity array of the triangulation of Q, n.
Cd+p by-nme array of integers where ny,e = d!]_[z 1 Vi

Function [q,me] «— CGTrssSim (N, p)
q — CarTESIANGRIDPOINTS(p * N') /p
B — CGeeTA(p * N)
iBase < 1 4+ p{B, CarreEsiaNGrRIDPOINTS(N — 1))
[qy, mey] «— KunuNTrRIORDER(d, D)
Idx «— d!'=[0: (N, — 1)]
for [< 1 to d! do
Idx « Idx + 1
for j < 1to C},,
me(j, Tdx) « iBase + p + + q, (-, me,c(j, 1)
end for
end for
end Function

3.5 m-faces tessellations of a cartesian grid with p-order
simplices

Let Q,n be the d-dimensional cartesian grid defined in section ?7. As before,
we denote by 7, n.q and 7, n.me respectively the nodes and connectivity arrays
of the tessellation of the cartesian grid Q, n with p-order d-simplices obtained
from CGTrIOrRDER function and described in Algorithm

Let m e [[O d[and k € [1,E,, 4] where E,, ¢ is the number of m-faces
defined in We want to determine 7"y (k), the tessellation obtained from
the restrlctlon of Ty to its k-th m-face Where the numbering of the m-faces is
specified in section [2.3] We denote by

30

(k).q, the (local) nodes array

Tyn
7, (k).me, the (local) connectivity array
* Ty)n

(k).toGlobal, the global indices such that

pT:lN(k)q = TN-Q(i, pTN(k).tOGIObal).

By construction, EmN(k) is the triangulation by m-simplices of an m-hypercube
in R%.

The only difference with the construction of Q7'y (k) given in section is
on the me" array. For Q7'y(k), we had

[q"”,me"] — CGTessHyr(N (idnc), p)
whereas for 7"y (k) we must have instead
[V, me"] «— CGTessSmv(N (idnc), p)

So only one line changes in the Algorithm [3| to obtain the new one given in
Algorithm ?? where the function CGTessSivFaces computes 7"y (k), Vk €
gd—my
The line
[q”,me"] — CGTessHyr(N (idnc), p)

is replaced by
[q¥,me"] — CGTessSiM(N (idne), p)

31

Algorithm 11 Function CGTEssSiMFacEs : computes all m-faces tessellations
of the cartesian grid On with p-order m-simplices

Input :
N : array of d integers, N (i) = N;.
m : integer, 0 < m < d,
p . positive integer.
Output :
LN G array of triangulations of all m-faces comming from

the cartesian grid triangulation Ty .

The length of 7"y is Epq = 2d—m (i) (number of m-faces).

Function 7"y < CGTessSMFACES (N,m,p)
B — CGeeTA(p * N)
if m == 0 then
Q < D1aG(N) * CarresiANGRrIDPOINTS(ONES(1, d))
for k — 1 to 2¢ do
o (b).a < Q. k)
T, v (k). me < 1
o (k).toGlobal < 1 +(8,Q(:, k))

end for
else

Ne < d

¢ m

L «— Cowmss([1,d],d —m)
S «— CarreSIANGRIDPOINTS(ONES(1, d — m))
k<1
for [— 1 to n. do
ide < L(,:)
idne « [[1,d]\idc
[@*,me™] «— CGTriancuLaTION(N (idnce), p)
nl — [T.-, (N (idnc(s)) + 1) = or length of q¥
for r < 1 to 297 do
v (k) qlidne,) g
v (k).q(ide,) < (N (ide)” .+ S(:, 7)) = Onms(1,nl)
v (k). me < me"
T (k).toGlobal « 1 + pB* = Ty (k).q
ke—k+1
end for
end for
end if
end Function

3.6 d-orthotope tessellation with d-simplices

Let O4 be the d-orthotope [a1,b1] % -+ X [ag,bq]-
The mechanism is similar to that seen in section[2.5] while taking as a starting
point the cartesian grid triangulation.

32

Algorithm 12 Function OrRraTRIANGULATION : regular tessellation with sim-
plices of a d-orthotope

Input
N : array of d integers, N (i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
Output
q : vertices array with d-by-nq reals.
me : connectivity array with (d + 1)-by-n. integers.

Function [q,me] <« OrraTrIANGULATION (N,a,b)
[q,me] < CGTRIANGULATION(NN)
q < BoxMarrinc(q,a,b,N)

end Function

3.7 m-faces tessellations of a d-orthotope with d-simplices

As seen in section [2.5] we only have to apply the function BoxMaprpiNG to each
vertices array 7"y (k).q corresponding to the k-th m-faces tessellations of the
cartesian grid 9, n. This is the object of the function ORTHTRIFACES given in
Algorithm

Algorithm 13 Function OrruTRIFACES : computes the conforming tessella-
tions with simplices of all m-faces of the d-orthotope [a1,b1] X -+ x [a4, ba]

Input
N : array of d integers, N (i) = N;.
a,b : arrays of d reals, a(i) = a;, b(i) = b;
m : integer, 0 < m <d
Output
Tyt ¢ array of the tessellations with simplices of all m-faces of the orthotope.
. o — 9d—m d
Its length is Fp, g = 2 (m) .

Function 73 < OrruTrIFAcEs (N,a,b, m)
TN' < CGTrssSiMFaces(N,m)
for k — 1 to Len(Ty") do
Tn' (k).q < BoxMarpine(TN' (k).q,a,b,N)
end for
end Function

33

The codes in Matlab, Octave and Python, referenced as fc_hypermesh, can

be obtained on

http://www.math.univ-parisl13.fr/ cuvelier/software/

The Python package fc_hypermesh is also available on PyPI [9].

A Vectorized algorithmic language

A.1 Common operators and functions

We also provide below some common functions and operators of the vectorized
algorithmic language used in this article which generalize the operations on
scalars to higher dimensional arrays, matrices and vectors:

A—B
AxB
A.xB
A./B
A()
[]
H

A, J)

A(l,:)
TRANSPOSE(A)
Sum(A, dim)
Prop(A, dim)

In

Lmxn (or 1)
(Dmxn (Or (Dn)
Onges(m,n)
ZErROS(mMm,n)
RepTILE(A, m, n)

ResHAPE(A, m, n)

Finp(z)

Perms(V)

Cowmss(V, k)

Assignment

matrix multiplication,

element-wise multiplication,

element-wise division,

all the elements of A, regarded as a single column.
Horizontal concatenation,

Vertical concatenation,

J-th column of A,

I-th row of A,

transpose of A,

sums along dimension dim,

product along dimension dim,

n-by-n identity matrix,

m-by-n (or n-by-n) matrix or sparse matrix of ones,
m-by-n (or n-by-n) matrix or sparse matrix of zeros,
m-by-n array/matrix of ones,

m-by-n array/matrix of zeros,

tiles the p-by-¢ array/matrix A to produce the (m x p)-
by-(n x ¢) array composed of copies of A,

returns the m-by-n array/matrix whose elements are

taken columnwise from A.
returns a vector of indices of nonzero elements of a vec-

tor x.

A.2 Combinatorial functions

where V' is an array of length n. Returns a n!-by-n array
containing all permutations of V' elements.

The lexicographical order is chosen.

where V' is an array of length n and k € [1,n].
Returns a ﬁiw-by—k array containing all combina-

tions of)])
n elements taken k at a time. The lexicographical order

is chosen.

34

http://www.math.univ-paris13.fr/~cuvelier/software/
https://pypi.python.org/pypi/fc-hypermesh

B Computational costs

All the algorithms of this paper were implemented under Matlab [5], Octave [4]
and Python [6]. In each language, the OrthMesh class is available which contains
a regular and conforming tessellations of a d-orthotope and all its m-faces with
high-order orthotopes or simplicial elements (0 < m < d).

In this section, computational costs of the OrthMesh constructor are pre-
sented for tessellations of the orthotope [—1;1]% with p-order orthotopes and
simplices where d € [2,5] and p € [1,3]. In each direction, the orthotope is
subdivized in N intervals and so there is ny = (pN +1)¢ nodes in the associated
tessellation. If the orthotope is tessellated with orthotopes, then it contains
Nme = N? orthotope elements. Otherwise the orthotope is tessallated with
simplices and it contains ny,, = d!N 4 glements.

The computations were done on a computer with Intel (R) Core(TM) i9-7940X
CPU @ 3.10GHz processor and 63Go of RAM under Ubuntu 18.04.3 LTS (x86_64).

B.1 Tessellation with p-order d-orthotopes

In this section, the computational costs of the OrthMesh constructor with p-
order d-orthotopes are given with d € [2,5] and p € [1, 3].

B.1.1 order p=1

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1,1]¢ orthotope with 1-order orthotopes are given
in tables [6] to [9] respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave
1000 1 002 001 1 000 000 0.220 (s) 0.514 (s) 0.328 (s)
2000 4 004 001 4 000 000 0.614 (s) 0.334 (s) 0.767 (s)
3000 9 006 001 9 000 000 1.379 (s) 0.664 (s) 1.546 (s)
4000 16 008 001 16 000 000 2.389 (s) 1.120 (s) 2.547 (s)
5000 25 010 001 25 000 000 3.701 (s) 1.755 (s) 3.918 (s)

Table 6: Tessellation of [—1, 1] with ny. orthotopes and nq nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
40 68 921 64 000 0.188 (s) 0.500 (s) 0.478 (s)
60 226 981 216 000 0.265 (s) 0.132 (s) 0.587 (s)
80 531 441 512 000 0.322 (s) 0.155 (s) 0.651 (s)
100 1 030 301 1 000 000 0.411 (s) 0.199 (s) 0.749 (s)
120 1 771 561 1 728 000 0.553 (s) 0.301 (s) 0.909 (s)
140 2 803 221 2 744 000 0.738 (s) 0.379 (s) 1.171 (s)
160 4 173 281 4 096 000 1.022 (s) 0.532 (s) 1.487 (s)
180 5 929 741 5 832 000 1.336 (s) 0.721 (s) 1.918 (s)

Table 7: Tessellation of [—1, 1] with orthotopes. Computational times in sec-
onds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

35

N Ngq Nme Python Matlab Octave

10 14 641 10 000 0.293 (s) 0.579 (s) 1.106 (s)
20 194 481 160 000 0.394 (s) 0.231 (s) 1.238 (s)
25 456 976 390 625 0.457 (s) 0.258 (s) 1.341 (s)
30 923 521 810 000 0.594 (s) 0.355 (s) 1.515 (s)
35 1679 616 1 500 625 0.830 (s) 0.493 (s) 1.814 (s)

Table 8: Tessellation of [—1,1]* with ny. orthotopes and nq nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
2 243 32 0.531 (s) 0.745 (s) 2.883 (s
4 3 125 1 024 0.512(s) 0.374 (s) 2.868 (s
6 16 807 7 776 0.634 (s) 0.365 (s) 3.024 (s

10 161 051 100 000 0.624
12 371 293 248 832 (0.770

)))

(s) (s) (s)

(s) (s) (s)

8 59 049 32 768 0.584 (5) 0.374 (s) 3.053 (s)
(s) (s) (s)

(s) (s) (s)

Table 9: Tessellation of [—1,1]% with nye orthotopes and ny nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

B.1.2 order p=2

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1, 1] orthotope with 2-order orthotopes are given
in tables [10] to [L3] respectively for d = 2 to d = 5.

N N Nme Python Matlab Octave
1000 4 004 001 1 000 000 0.388 (s) 0.618 (s) 0.579 (s)
2000 16 008 001 4 000 000 1.426 (s) 0.741 (s) 1.810 (s)
3000 36 012 001 9 000 000 3.199 (s) 1.535(s) 3.915 (s)
4000 64 016 001 16 000 000 5.523 (s) 2.710 (s) 6.730 (s)
5000 100 020 001 25 000 000 8.700 (s) 4.048 (s) 10.161 (s)

Table 10: Tessellation of [—1,1]? with nye 2-order orthotopes and n, nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

36

N Ng Nme Python Matlab Octave
40 531 441 64 000 0.272 (s) 0.538 (s) 0.614 (s)

60 1 771 561 216 000 0.389 (s) 0.228 (s) 0.807 (s)
80 4 173 281 512 000 0.610 (s) 0.372 (s) 1.111 (s)
100 8 120 601 1 000 000 1.041 (s) 0.643 (s) 1.755 (s)
120 13 997 521 1 728 000 1.655 (s) 1.012 (s) 2.618 (s)
140 22 188 041 2 744 000 2.549 (s) 1.517 (s) 3.829 (s)
160 33 076 161 4 096 000 3.719 (s) 2.238 (s) 5.399 (s)
180 47 045 881 5 832 000 5.176 (s) 3.073 (s) 7.456 (s)

Table 11: Tessellation of [—1,1] with nye 2-order orthotopes and nqy nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

N Ng Nme Python Matlab Octave
10 194 481 10 000 0.360 (s) 0.607 (s) 1.234 (s)
20 2 825 761 160 000 0.688 (s) 0.480 (s) 1.781 (s)
25 6 765 201 390 625 1.319 (s) 0.875 (s) 2.999 (s)
30 13 845 841 810 000 2.332(s) 1.579 (s) 4.541 (s)
35 25 411 681 1 500 625 3.956 (s) 2.743 (s) 7.088 (s)

Table 12: Tessellation of [—1, 1]* with 2-order orthotopes. Computational times
in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave

2 3 125 32 0.514 (s) 0.780 (s) 2.898 (s)
4 59 049 1 024 0.569 (s) (s) (s)
6 371203 7776 0.682(s) (s) (s)
8 1419 857 32 768 0.862 (s) 0.646 (s) 4.165 (s)
0 (s) (s) (s)
2 (s) (s) (s)

4 084 101 100 000 1.384
9 765 625 248 832 2.534

Table 13: Tessellation of [—1,1]° with nye 2-order orthotopes and n, nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

B.1.3 order p=3

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1,1]? orthotope with 3-order orthotopes are given
in tables [14] to [I7] respectively for d = 2 to d = 5.

37

N Ng Nme Python Matlab Octave

500 2 253 001 250 000 0.248 (s
1000 9 006 001 1 000 000 0.751 (
2000 36 012 001 4 000 000 2.771 (
3000 81 018 001 9 000 000 6.173 (s
4000 144 024 001 16 000 000 11.061 (

Table 14: Tessellation of [—1,1]? with nye 3-order orthotopes and n, nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

N Ng Nme Python Matlab Octave
40 1 771 561 64 000 0.365 (s) 0.601 (s) 0.760 (s)
60 5 929 741 216 000 0.740 (s) 0.468 (s) 1.352 (s)
80 13 997 521 512 000 1.440 (s) 0.928 (s) 2.515 (s)
100 27 270 901 1 000 000 2.757 (s) 1.688 (s) 4.271 (s)
120 47 045 881 1 728 000 4.751 (s) 2.800 (s) 6.937 (s)
140 74 618 461 2 744 000 7.340 (s) 4.327 (s) 10.592 (s)

Table 15: Tessellation of [—1,1]% with nye 3-order orthotopes and nq nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

N Ng Nme Python Matlab Octave
5 65 536 625 0.326 (s) 0.597 (s) 1.183 (s)
10 923 521 10 000 0.430 (s) 0.280 (s) 1.424 (s)
20 13 845 841 160 000 1.974 (s) 1.528 (s) 4.420 (s)
25 33 362 176 390 625 4.208 (s) 3.347 (s) 8.257 (s)
30 68 574 961 810 000 8.524 (s) 6.173 (s) 15.318 (s)

Table 16: Tessellation of [—1,1]* with nye 3-order orthotopes and n, nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

N Ng Nme Python Matlab Octave

3 100 000 243 0.604 (s) 0.784 (s) 3.392 (s
5 1048 576 3 125 0.778 (s) (s) (
7 5153 632 16 807 1.468 (s) (s) (
9 17 210 368 59 049 3.515 (s) 3.005 (s) 9.897 (s
0 28 629 1561 100 000 5.451 (s) (s) (

1

Table 17: Tessellation of [—1,1]° with nye 3-order orthotopes and n, nodes.
Computational times in seconds for Python 3.8.1, Matlab 2019a and Oc-
tave 5.1.0.

38

B.2 Tessellation with p-order d-simplices

In this section, the computational costs of the OrthMesh constructor with p-
order d-simplices are given with d € [2,5] and p € [1, 3].

B.2.1 order p=1

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1,1]¢ orthotope with 1-order simplices are given
in tables [I8] to respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave
1000 1 002 001 2 000 000 0.272 (s) 0.599 (s) 0.422 (s)
2000 4 004 001 8 000 000 0.770 (s) 0.634 (s) 1.005 (s)
3000 9 006 001 18 000 000 1.636 (s) 1.159 (s) 2.158 (s)
4000 16 008 001 32 000 000 2.804 (s) 2.146 (s) 3.681 (s)
5000 25 010 001 50 000 000 4.358 (s) 3.285 (s) 5.719 (s)

Table 18: Tessellation of [—1,1]? with ny. simplices and n, nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019aand Octave 5.1.0.

N Ng Nme Python Matlab Octave
40 68 921 384 000 0.245 (s) 0.568 (s) 0.482 (s)
60 226 981 1 296 000 0.346 (s) 0.222 (s) 0.639 (s)
80 531 441 3 072 000 0.468 (s) 0.399 (s) 0.901 (s)
100 1 030 301 6 000 000 0.672 (s) 0.659 (s) 1.306 (s)
120 1 771 561 10 368 000 0.989 (s) 0.980 (s) 1.886 (s)
140 2 803 221 16 464 000 1.420 (s) 1.543 (s) 2.736 (s)
160 4 173 281 24 576 000 2.023 (s) 2.161 (s) 3.785 (s)
180 5 929 741 34 992 000 3.341 (s) 3.279 (s) 5.522 (s)

Table 19: Tessellation of [—1,1]3 with n,. simplices and nq nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
10 14 641 240 000 0.372 (s) 0.631 (s) 1.148 (s)
20 194 481 3 840 000 0.854 (s) 0.512 (s) 1.742 (s)
25 456 976 9 375 000 1.600 (s) 1.134 (s) 2.670 (s)
30 923 521 19 440 000 2.915 (s) 2.090 (s) 4.360 (s)
35 1 679 616 36 015 000 5.278 (s) 4.088 (s) 7.075 (s)

Table 20: Tessellation of [—1,1]* with n.,. simplices and ng nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

39

N Ng Nme Python Matlab Octave
2 243 3 840 0.571 (s) 0.817 (s) 3.032 (s)
4 3 125 122 880 0.556 (s 0.393 (s 3.031 (s
6 16 807 933 120 0.777 (s 0.504 (s 3.354 (s

10 161 051 12 000 000 2.307

(s) (s) (s)
(s) (s) (s)
8 59 049 3932160 1.110(s) 0.870 (s) 3.924 (s)
(s) (s) (s)
12 371 293 29 859 840 5.122 (s) (s) (s)

Table 21: Tessellation of [—1,1]% with ny. simplices and n, nodes. Computa-
tional times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

B.2.2 order p=2

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1,1]¢ orthotope with 2-order simplices are given
in tables 22] to [25] respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave
1000 4 004 001 2 000 000 0.461 (s) 0.838 (s) 0.691 (s)
2000 16 008 001 8 000 000 1.584 (s) 1.547 (s) 2.202 (s)
3000 36 012 001 18 000 000 3.482 (s) 3.087 (s) 4.953 (s)
4000 64 016 001 32 000 000 6.059 (s) 5.577 (s) 8.619 (s)
5000 100 020 001 50 000 000 9.779 (s) 8.637 (s) 13.367 (s)

Table 22: Tessellation of [—1, 1]? with e 2-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
40 531 441 384 000 0.323 (S

60 1 771 561 1 296 000 0.520 (s S 1.071 (s
80 4 173 281 3 072 000 0.926 (s) 0.861 (s 1.785 (s
100 8 120 601 6 000 000 1.710 S 3.108 (s
120 13

140 22 188 041 16 464 000 4.165
160 33 076 161 24 576 000 6.150

(
(
(
997 521 10 368 000 2.777 (s
(
(
180 47 045 881 34 992 000 9.107 (

Table 23: Tessellation of [—1, 1] with e 2-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

40

N Ng Nme Python Matlab Octave

10 194 481 240 000 0.458 (s)))
20 2825 761 3 840 000 1.910 (s) (s) (s)
25 6 765 201 9 375 000 4.185 (s) 3.611 (s) 7.224 (s)
(s) (s) (s)
(s) (s) (s)

30 13 845 841 19 440 000 8.654
35 25 411 681 36 015 000 15.931

Table 24: Tessellation of [—1, 1]* with e 2-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
2 3 125 3840 0.568 (s) 0.856 (s) 3.188 (s)
4 59 049 122 880 0.711 (s) 0.450 (s) 3.340 (s)
6 371 293 933 120 1.168 (s) 0.825 (s) 4.268 (s)
8 1419 857 3 932 160 2515 (s) 2412 (s) 6.637 (s)

10 4 084 101 12 000 000 6.511 (s) 7.725 (s) 15.118 (s)

12 9 765 625 29 859 840 15.856 (s) 21.417 (s) 34.776 (s)

Table 25: Tessellation of [—1, 1]° with n,,e 2-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

B.2.3 order p=3

Under Matlab, Octave and Python, the computational costs of the OrthMesh
constructor to tesselate the [—1,1]? orthotope with 3-order simplices are given
in tables [26] to respectively for d = 2 to d = 5.

N Ng Nme Python Matlab Octave
500 2 253 001 500 000 0.306 (s) 0.643 (s) 0.503 (s)
1000 9 006 001 2 000 000 0.796 (s) 0.789 (s) 1.398 (s)
2000 36 012 001 8 000 000 3.087 (s) 2.891 (s) 5.003 (s)
3000 81 018 001 18 000 000 6.799 (s) 6.304 (s) 11.251 (s)
4000 144 024 001 32 000 000 12.154 (s) 11.017 (s) 19.655 (s)

Table 26: Tessellation of [—1, 1] with ne 3-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

41

N Ng Nme Python Matlab Octave

40 1 771 561 384 000 0.441 (s)))
60 5 929 741 296 000 0.977 (s) (s) (s)
80 13 997 521 072 000 2.011 (s) (s) (s)
100 27 270 901 000 000 3.703 (s) 3.699 (s) 7.350 (s)
(s) (s) (s)
(s) (s) (s)

1
3
6
120 47 045 881 10 368 000 6.285
140 74 618 461 16 464 000 9.982

Table 27: Tessellation of [—1, 1] with n,e 3-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ny Nme Python Matlab Octave
5 65 536 15 000 0.419 (s) 0.681 (s) 1.312 (s)
10 923 521 240 000 0.598 (s) 0.450 (s) 1.694 (s)
20 13 845 841 3 840 000 4.833 (s) 5.139 (s) 10.122 (s)
25 33 362 176 9 375 000 11.597 (s) 12.917 (s) 23.813 (s)
30 68 574 961 19 440 000 23.132 (s) 25.455 (s) 44.084 (s)

Table 28: Tessellation of [—1, 1]* with n,e 3-order simplices and ny nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N Ng Nme Python Matlab Octave
3 100 000 29 160 0.790 (s) 0.928 (s) 3.555 (s)
5 1 048 576 375 000 1.374 (s) 1.117 (s) 5.003 (s)
7 5153 632 2 016 840 3.652 (s) 4.072(s) 9.261 (s)
9 17 210 368 7 085 880 11.049 (s) 16.948 (s) 25.328 (s)
10 28 629 151 12 000 000 18.305 (s) 28.634 (s) 43.364 (s)

Table 29: Tessellation of [—1, 1]° with e 3-order simplices and nq nodes. Com-
putational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

C Some combinatorial reminders

Let k € N and n € N, with n > k. The binomial coefficient is written by C¥ or

(Z) and its given by

42

There are some usefull identities:

CS = C:zl_k7 (28)
ck=cklyck |, Pascal’s formula (29)
Z cr = C’fjﬁ, hockey-stick formula (30)
i=k
Let d € N* and m € IN. An element @ = (o, ...,aq) of IN¢ is called a

multi-index.
Lemma 9 Let d € IN* and m € IN. We consider in IN% the set
By ={aeN": |a| =m}, (31)

where |a| = Z;l:l a;. Then the cardinality of B, denoted by card(B,,) is given
by

card(By,) = CJypn1- (32)
Indeed this corresponds to placing m identical balls into d distinct boxes where
more than one ball in a box is possible.

Theorem 10 (Theorem 1.8, page 6, [I]) The number of ways to distribute
m identical objects into d distinct boxes, with empty boxes allowed, and multiple
occupancy allowed is given by CI', ;.

Lemma 11 Let d e N* and m € IN. Let A,, be the subset of N% defined by

Ay ={aeN?: |a| <m}, (33)
Then the cardinality of A, is
card(A,,) = CT4,,. (34)
Proof: The family of sets By, ..., B,, is a partition of A,, and so we have

card(A,,) = Z card(B;) = 2 C’éﬂ_l
7=0 j=0

m—1

—_m J
- Cd+7n—1 + Z Cd+j—1

=0

From ([28), we have Cfivﬂ;l =it , and so

dtj—
m—1
d—1
card(4,,) = Cgl oy + Z Catj-1-
=0

From the hockey-stick formula with k =d—1and n = d+m—2 we deduce

d+m—2 m—1
d d—1 d—1
Citm—1 = Z G = Z Od+j71
i=d—1 Jj=0
From , we have C(‘il+m_1 = C:{Zifl. Then we get
card(Am,) = Cyl 1 + Cg_fri_l.
Finally, using Pascal’s formula gives ((34). o

43

List of algorithms

1 Function CGBeTA : Computes 5, VI € [1,d], defined in (10)] . . 11

2 Function CGTrssHyYP : computes the nodes array q and the |

| connectivity array me obtained from a tesselation of the p-order |

| cartesian grid 9, N with unit p-order hypercube. |. 13

13 Function CGTEssHYPFACES : computes all m-faces tessellations |

| of the cartesian grid 9, n with unit p-order m-hypercubes| . . . 18

4 Function BoxMaprpPING : mapping points of the cartesian grid |

[Q, N to the d-orthotope [a1,b1] x - x [ag, b4l 19

5] Function OrRTHTESSORTH : d-orthotope regular tessellation with |

| p-order orthotopes |o oL 19
16 Function OrTHTESSFACES : computes the conforming tessella-
tions with p-order orthotopes of all the m-faces of the d-orthotope

al,bl]x---x[ad,bd | 20

[7 unction NOoDESSIMREF : returns nodes of the retference p-order |

| d-simplex in R 22

[Kuhn’s triangulation of the unit d-hypercube [0, 1] with d! sim- |

| plices (positive orientation) [. oL 25

[0 Kuhn’s triangulation of the unit d-hypercube [0,1]¢ with d! p- |

| order simplices (positive orientation) |. 28

[T0 Function CGTEssSIM : computes the tessellation of the cartesian |

| grid 9, n with p-order simplices| 30

11 Function CGTEssSIMFACES : computes all m-faces tessellations |

| of the cartesian grid Oy with p-order m-simplices|. 32

112 Function OrTHTRIANGULATION : regular tessellation with sim- |

| plices of a d-orthotope|. Lo 33

113 Function OrRTHTRIFACES : computes the conforming tessellations |

with simplices of all m-faces of the d-orthotope [a,b1[x - -Xx[ag, bq]| 33

List of Tables

1 p-order d-orthotope mesh element in R?. Nodes are the points.| . 4
2 p order d-simplicial mesh element in R¢. Nodes are the points.| 4
B Number of m-faces of a d-hypercubel 7
4 Number of m-faces of a nondegenerate d-simplex| 8
6 Tessellation of [—1,1]* with ny. orthotopes and n, nodes. Com-

| putational times 1n seconds for Python 3.8.1, Matlab 2019a and

[Octave 5.1.0. 1. o e 35
[7 Tessellation of [—1, 1]° with orthotopes. Computational times in |

| seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. 35
[8 Tessellation of [—1,1]* with n,e orthotopes and ny nodes. Com-

| putational times in seconds for Python 3.8.1, Matlab 2019a and

[Octave 5. 1.0. 1. o e 36
[0 Tessellation of [—1, 1]° with n,,e orthotopes and ny nodes. Com-

| putational times in seconds for Python 3.8.1, Matlab 2019a and

[Octave 5.1.0. | 36

44

[0

Tessellation of [—1, 1]* with n,. 2-order orthotopes and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. | o 36

i1

Tessellation of [—1, 1]° with ny,. 2-order orthotopes and nq nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0.1 37

2

Tessellation of [—1,1]* with 2-order orthotopes. Computational |

times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. | 37

E

Tessellation of [—1, 1]° with ny,. 2-order orthotopes and nq nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0, 1 37

i

Tessellation of [—1, 1]* with n,. 3-order orthotopes and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. | oo 38

B

Tessellation of [—1, 1]° with ny,. 3-order orthotopes and nq nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0, 1 38

16

Tessellation of [—1, 1]* with ny,. 3-order orthotopes and nq nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0. |o 38

7

Tessellation of [—1, 1]” with n,,e 3-order orthotopes and ny nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. 1 o 38

[i8

Tessellation of [—1,1]* with n,,e simplices and nq nodes. Com-

putational times in seconds for Python 3.8.1, Matlab 2019aand

Octave 5. 1.0. oo 39

B

Tessellation of [—1,1]% with n,,. simplices and n, nodes. Com-

putational times in seconds for Python 3.8.1, Matlab 2019a and
Octave 5. L0 1. o i 39

R0

Tessellation of [—1,1]|* with n,e simplices and nq nodes. Com-

putational times in seconds for Python 3.8.1, Matlab 2019a and

Octave 5. 1.0, 1. 39

R1

Tessellation of [—1,1]° with n,,. simplices and nq, nodes. Com-

putational times in seconds for Python 3.8.1, Matlab 2019a and

Octave 5.1.0. 1. e 40

R2

Tessellation of [—1, 1]* with n,. 2-order simplices and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0, | 40

B3

Tessellation of [—1,1]% with n,. 2-order simplices and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. |o 40

R4

Tessellation of [—1,1]* with n,, 2-order simplices and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0, | o 41

R5

Tessellation of [—1, 1]° with ny,. 2-order simplices and n, nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. |o 41

B6

Tessellation of [—1, 1]* with n,,e 3-order simplices and n, nodes.

Computational times 1n seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. | o 41

[27 Tessellation of [—1, 1]? with n,,. 3-order simplices and ny nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. |o 42

[28 Tessellation of [—1,1]* with nye 3-order simplices and nq nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5. 1.0, | 42

[29 Tessellation of [—1, 1]° with n,,. 3-order simplices and ny nodes.

Computational times in seconds for Python 3.8.1, Matlab 2019a

and Octave 5.1.0. |o 42

References

[1]

2]

13l

4]

15]

[6]

7]

18]

19]

[10]

[11]

R.M. Beekman. An Introduction to Number Theoretic Combinatorics.
Lulu.com, 2017.

Jirgen Bey. Simplicial grid refinement: on freudenthal’s algorithm and the
optimal number of congruence classes. Numerische Mathematik, 85(1):1—
29, 2000.

H.S.M. Coxeter. Regular Polytopes. Dover books on advanced mathematics.
Dover Publications, 1973.

F. Cuvelier. fc_hypermesh: a object-oriented Octave package to mesh
any d-orthotopes (hyperrectangle in dimension d) and their m-faces with
high order simplices or orthotopes. http://www.math.univ-parisi3.fr/
~“cuvelier/software/, 2017. User’s Guide.

F. Cuvelier. fc_hypermesh: a object-oriented Matlab toolbox to mesh
any d-orthotopes (hyperrectangle in dimension d) and their m-faces with
high order simplices or orthotopes. http://www.math.univ-parisi3.fr/
“cuvelier/software/, 2019. User’s Guide.

F. Cuvelier. fc_hypermesh: a object-oriented Python package to mesh
any d-orthotopes (hyperrectangle in dimension d) and their m-faces with
high order simplices or orthotopes. http://www.math.univ-parisi3.fr/
“cuvelier/software/, 2019. User’s Guide.

F. Cuvelier and G. Scarella. Vectorized algorithms for regular tessellations
of d-orthotopes and their faces. http://www.math.univ-paris13.fr/ cuve-
lier /docs/reports/HyperMesh /HyperMesh 0.0.4.pdf, 2016.

Frangois Cuvelier and Gilles Scarella. Vectorized algorithms for regular tes-
sellations of d-orthotopes and their faces. HAL archives ouvertes, November
2017. preprint.

Python Software Foundation. Pypi, the python package index. https:
//pypi.python.org/, 2003-.

H. W. Kuhn. Some combinatorial lemmas in topology. IBM Journal of
Research and Development, 4:518-524, 1960.

K. Weiss. Diamond-Based Models for Scientific Visualization. PhD thesis,
University of Maryland, 2011.

46

http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/Octave/fc-hypermesh/fc-hypermesh.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/Matlab/fc-hypermesh/fc-hypermesh.pdf
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/
http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-hypermesh/fc_hypermesh.pdf
https://pypi.python.org/
https://pypi.python.org/

	Definitions and notations
	d-orthotope and d-hypercube
	d-simplex

	Tessellation with high-order d-orthotope elements
	High-order d-orthotope mesh elements in Rd
	Tessellation of a cartesian grid with p-order orthotopes
	Nodes of the tessellation
	Connectivity array of the tessellation

	Numbering of the m-faces of the unit d-hypercube
	m-faces tessellations with high order ortotopes
	Case m=0.
	Case m>0

	Tessellation of a d-orthotope with d-orthotopes
	m-faces tessellations of a d-orthotope

	Tessellation with high-order d-simplicial elements
	High-order d-simplicial mesh elements in Rd
	Kuhn's decomposition of a d-hypercube
	Kuhn's decomposition of a d-hypercube by p-order simplices
	Cartesian grid tesselation with p-order simplices
	m-faces tessellations of a cartesian grid with p-order simplices
	d-orthotope tessellation with d-simplices
	m-faces tessellations of a d-orthotope with d-simplices

	Vectorized algorithmic language
	Common operators and functions
	Combinatorial functions

	Computational costs
	Tessellation with p-order d-orthotopes
	order p=1
	order p=2
	order p=3

	Tessellation with p-order d-simplices
	order p=1
	order p=2
	order p=3

	Some combinatorial reminders

